4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Geometric Modulation of Local CO Flux in Ag@Cu 2 O Nanoreactors for Steering the CO 2 RR Pathway toward High‐Efficacy Methane Production

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          U1 snRNP regulates cancer cell migration and invasion in vitro

          Stimulated cells and cancer cells have widespread shortening of mRNA 3’-untranslated regions (3’UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates’ most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells’ migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3’UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CO2electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What would it take for renewably powered electrosynthesis to displace petrochemical processes?

              Electrocatalytic transformation of carbon dioxide (CO 2 ) and water into chemical feedstocks offers the potential to reduce carbon emissions by shifting the chemical industry away from fossil fuel dependence. We provide a technoeconomic and carbon emission analysis of possible products, offering targets that would need to be met for economically compelling industrial implementation to be achieved. We also provide a comparison of the projected costs and CO 2 emissions across electrocatalytic, biocatalytic, and fossil fuel–derived production of chemical feedstocks. We find that for electrosynthesis to become competitive with fossil fuel–derived feedstocks, electrical-to-chemical conversion efficiencies need to reach at least 60%, and renewable electricity prices need to fall below 4 cents per kilowatt-hour. We discuss the possibility of combining electro- and biocatalytic processes, using sequential upgrading of CO 2 as a representative case. We describe the technical challenges and economic barriers to marketable electrosynthesized chemicals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                August 2021
                July 05 2021
                August 2021
                : 33
                : 32
                : 2101741
                Affiliations
                [1 ]Soochow Institute of Energy and Material Innovations College of Energy Jiangsu Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies Soochow University Suzhou 215006 China
                [2 ]School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 China
                [3 ]School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide 5005 Australia
                [4 ]Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
                [5 ]Analysis and Testing Center Soochow University Suzhou 215123 China
                Article
                10.1002/adma.202101741
                c9bb835d-f670-4b89-b20f-f1a15c33cf1b
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article