3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photothermal Nanozyme‐Based Microneedle Patch against Refractory Bacterial Biofilm Infection via Iron‐Actuated Janus Ion Therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial biofilms: a common cause of persistent infections.

          Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Implant infections: adhesion, biofilm formation and immune evasion

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies

              Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                December 2022
                November 17 2022
                December 2022
                : 34
                : 51
                : 2207961
                Affiliations
                [1 ]Department of Orthopedics The First Affiliated Hospital of USTC University of Science and Technology of China Hefei Anhui 230001 P. R. China
                [2 ]Department of Orthopedics Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200233 P. R. China
                Article
                10.1002/adma.202207961
                36239263
                c9492f0d-6abd-4f98-8769-0e5c662a51ad
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article