0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic and Clinical Features of Heterotaxy in a Prenatal Cohort

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: Some genetic causes of heterotaxy have been identified in a small number of heterotaxy familial cases or animal models. However, knowledge on the genetic causes of heterotaxy in the fetal population remains scarce. Here, we aimed to investigate the clinical characteristics and genetic spectrum of a fetal cohort with heterotaxy.

          Methods: We retrospectively investigated all fetuses with a prenatal diagnosis of heterotaxy at a single center between October 2015 and November 2020. These cases were studied using the genetic testing data acquired from a combination of copy number variation sequencing (CNV-seq) and whole-exome sequencing (WES), and their clinical phenotypes were also reviewed.

          Result: A total of 72 fetuses diagnosed with heterotaxy and complete clinical and genetic results were enrolled in our research. Of the 72 fetuses, 18 (25%) and 54 (75%) had left and right isomerism, respectively. Consistent with the results of a previous study, intracardiac anomalies were more severe in patients with right atrial isomerism than in those with left atrial isomerism (LAI) and mainly manifested as atrial situs inversus, bilateral right atrial appendages, abnormal pulmonary venous connection, single ventricles or single atria, and pulmonary stenosis or atresia. In 18 fetuses diagnosed with LAI, the main intracardiac anomalies were bilateral left atrial appendages. Of the 72 fetuses that underwent CNV-seq and WES, 11 (15.3%) had positive genetic results, eight had definitive pathogenic variants, and three had likely pathogenic variants. The diagnostic genetic variant rate identified using WES was 11.1% (8/72), in which primary ciliary dyskinesia (PCD)-associated gene mutations (CCDC40, CCDC114, DNAH5, DNAH11, and ARMC4) accounted for the vast majority (n = 5). Other diagnostic genetic variants, such as KMT2D and FOXC1, have been rarely reported in heterotaxy cases, although they have been verified to play roles in congenital heart disease.

          Conclusion: Thus, diagnostic genetic variants contributed to a substantial fraction in the etiology of fetal heterotaxy. PCD mutations accounted for approximately 6.9% of heterotaxy cases in our fetal cohort. WES was identified as an effective tool to detect genetic causes prenatally in heterotaxy patients.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.

          Widespread clinical laboratory implementation of next-generation sequencing-based cancer testing has highlighted the importance and potential benefits of standardizing the interpretation and reporting of molecular results among laboratories. A multidisciplinary working group tasked to assess the current status of next-generation sequencing-based cancer testing and establish standardized consensus classification, annotation, interpretation, and reporting conventions for somatic sequence variants was convened by the Association for Molecular Pathology with liaison representation from the American College of Medical Genetics and Genomics, American Society of Clinical Oncology, and College of American Pathologists. On the basis of the results of professional surveys, literature review, and the Working Group's subject matter expert consensus, a four-tiered system to categorize somatic sequence variations based on their clinical significances is proposed: tier I, variants with strong clinical significance; tier II, variants with potential clinical significance; tier III, variants of unknown clinical significance; and tier IV, variants deemed benign or likely benign. Cancer genomics is a rapidly evolving field; therefore, the clinical significance of any variant in therapy, diagnosis, or prognosis should be reevaluated on an ongoing basis. Reporting of genomic variants should follow standard nomenclature, with testing method and limitations clearly described. Clinical recommendations should be concise and correlate with histological and clinical findings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study

            Summary Background Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). Methods In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. Findings The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4–11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). Interpretation WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. Funding UK Department of Health and Social Care and The Wellcome Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants.

              Genomic microarrays used to assess DNA copy number are now recommended as first-tier tests for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Application of this technology has resulted in the discovery of widespread copy number variation in the human genome, both polymorphic variation in healthy individuals and novel pathogenic copy number imbalances. To assist clinical laboratories in the evaluation of copy number variants and to promote consistency in interpretation and reporting of genomic microarray results, the American College of Medical Genetics has developed the following professional guidelines for the interpretation and reporting of copy number variation. These guidelines apply primarily to evaluation of constitutional copy number variants detected in the postnatal setting.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                19 April 2022
                2022
                : 13
                : 818241
                Affiliations
                [1] 1 Beijing Anzhen Hospital , Capital Medical University , Beijing, China
                [2] 2 Beijing Lab for Cardiovascular PrecisionMedicine , Beijing, China
                [3] 3 Beijing Advanced Innovation Center for Big Data-based Precision Medicine , Capital Medical University , Beijing, China
                [4] 4 Key Laboratory of Medical Engineering for Cardiovascular Disease , Ministry of Education , Beijing, China
                [5] 5 Department of Ultrasound , Peking University International Hospital , Beijing, China
                Author notes

                Edited by: Wenhao Zhou, Fudan University, China

                Reviewed by: Zirui Dong, The Chinese University of Hong Kong, Hong Kong SAR, China

                Maria Sabater-Molina, Hospital Universitario Virgen de la Arrixaca, Spain

                *Correspondence: Yihua He, heyihuaecho@ 123456hotmail.com

                This article was submitted to Genetics of Common and Rare Diseases, a section of the journal Frontiers in Genetics

                Article
                818241
                10.3389/fgene.2022.818241
                9061952
                35518361
                c7aa3c64-c533-4215-afc5-9e05c8552042
                Copyright © 2022 Yi, Sun, Fu, Hao, Sun, Zhang, Han, Gu, Liu, Guo, Wang, Zhou, Zhang, Yang, Fan and He.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 November 2021
                : 09 March 2022
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Categories
                Genetics
                Original Research

                Genetics
                congenital heart,heterotaxy syndrome,whole exome,cnv (copy number variant),echocardiagraphy

                Comments

                Comment on this article