14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding laterality disorders and the left-right organizer: Insights from zebrafish

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry—or laterality—can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a “left-right organizer” (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.

          Related collections

          Most cited references279

          • Record: found
          • Abstract: found
          • Article: not found

          Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein.

          Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left-right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, the node lacked monocilia while the basal bodies were present. Immunocytochemistry revealed KIF3B localization in wild-type nodal cilia. Video microscopy showed that these cilia were motile and generated a leftward flow. These data suggest that KIF3B is essential for the left-right determination through intraciliary transportation of materials for ciliogenesis of motile primary cilia that could produce a gradient of putative morphogen along the left-right axis in the node.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish.

            In response to the lack of a transgenic line of zebrafish labeled with heart-specific fluorescence in vivo to serve as a research model, we cloned a 1.6-kb polymerase chain reaction (PCR) -product containing the upstream sequence (-870 bp), exon 1 (39 bp), intron 1 (682 bp), and exon 2 (69 bp) of the zebrafish cardiac myosin light chain 2 gene, (cmlc2). A germ-line transmitted zebrafish possessing a green fluorescent heart was generated by injecting this PCR product fused with the green fluorescent protein (GFP) gene with ends consisting of inverted terminal repeats of an adeno-associated virus. Green fluorescence was intensively and specifically expressed in the myocardial cells located both around the heart chambers and the atrioventricular canal. Neither the epicardium nor the endocardium showed fluorescent signals. The GFP expression in the transgenic line faithfully recapitulated with the spatial and temporal expression of the endogenous cmlc2. Promoter analysis showed that the fragment consisting of nucleotides from -210 to 34 (-210/34) was sufficient to drive heart-specific expression, with a -210/-73 motif as a basal promoter and a -210/-174 motif as an element involved in suppressing ectopic (nonheart) expression. Interestingly, a germ-line of zebrafish whose GFP appeared ectopically in all muscle types (heart, skeletal, and smooth) was generated by injecting the fragment including a single nucleotide mutation from G to A at -119, evidence that A at -119 combined with neighboring nucleotides to create a consensus sequence for binding myocyte-specific enhancer factor-2. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A human syndrome caused by immotile cilia.

              Four subjects who produced immotile sperm were studied. In three of the subjects, who had frequent bronchitis and sinusitis, there was no mucociliary transport, as measured by tracheobronchial clearance. Electron microscopy indicated that cilia from cells of these patients lack dynein arms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                23 December 2022
                2022
                : 10
                : 1035513
                Affiliations
                [1] 1 Department of Cell and Developmental Biology , State University of New York Upstate Medical University , Syracuse, NY, United States
                [2] 2 BioInspired Syracuse: Institute for Material and Living Systems , Syracuse, NY, United States
                Author notes

                Edited by: Myriam Roussigne, CNRS/Toulouse University UMR5077louse, France

                Reviewed by: Nikoloz Tsikolia, University Medical Center Göttingen, Germany

                Hiroshi Hamada, RIKEN Center for Biosystems Dynamics Research (BDR), Japan

                *Correspondence: Jeffrey D. Amack, amackj@ 123456upstate.edu

                This article was submitted to Morphogenesis and Patterning, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                1035513
                10.3389/fcell.2022.1035513
                9816872
                36619867
                9b4cf824-64c8-46a5-aeea-f49f1a5e04d6
                Copyright © 2022 Forrest, Barricella, Pohar, Hinman and Amack.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 September 2022
                : 12 December 2022
                Funding
                Funded by: National Institute of Child Health and Human Development , doi 10.13039/100000071;
                Categories
                Cell and Developmental Biology
                Review

                organ laterality,left-right asymmetry,birth defects,zebrafish,cilia,situs inversus,heterotaxy syndrome,left-right organizer

                Comments

                Comment on this article