2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enzymatic activity of prostate-specific antigen and its reactions with extracellular serine proteinase inhibitors.

      European journal of biochemistry / FEBS
      Amino Acid Sequence, Antigens, Neoplasm, isolation & purification, metabolism, Chromatography, Gel, Electrophoresis, Polyacrylamide Gel, Humans, Hydrolysis, Male, Molecular Sequence Data, Prostate-Specific Antigen, Serine Proteinase Inhibitors, alpha 1-Antichymotrypsin, alpha-Macroglobulins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostate-specific antigen (PSA) is one of the three most abundant prostatic-secreted proteins in human semen. It is a serine proteinase that, in its primary structure, manifests extensive similarities with that of the Arg-restricted glandular kallikrein-like proteinases. When isolated from semen by the addition of chromatography on aprotinin-Sepharose to a previously described procedure, PSA displayed chymotrypsin-like activity and cleaved semenogelin and the semenogelin-related proteins in a rapid and characteristic pattern, but had no trypsin-like activity. About one third of the purified protein was found to be enzymatically inactive, due to cleavage carboxy-terminal of Lys145. Active PSA formed SDS-stable complexes with alpha 1-antichymotrypsin, alpha 2-macroglobulin-analogue pregnancy zone protein. PSA formed inhibitory complexes with alpha 1-antichymotrypsin at a molar ratio of 1:1, a reaction in which PSA cleaved the inhibitor in a position identical to that reported from the reaction between chymotrypsin and alpha 1-antichymotrypsin. The formation of stable complexes between PSA and alpha 1-antichymotrypsin occurred at a much slower rate than that between chymotrypsin and alpha 1-antichymotrypsin, and at a similar or slightly slower rate than that between PSA and alpha 2-macroglobulin. When added to normal blood plasma in vitro, active PSA formed stable complexes both with alpha 2-macroglobulin and alpha 1-antichymotrypsin. This complex formation may be a crucial determinant of the turnover of active PSA in intercellular fluid or blood plasma in vivo.

          Related collections

          Author and article information

          Comments

          Comment on this article