Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pseudomonas putida CsrA/RsmA homologues negatively affect c‐di‐GMP pools and biofilm formation through the GGDEF/EAL response regulator CfcR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Expression of cfcR, encoding the only GGDEF/EAL response regulator in Pseudomonas putida, is transcriptionally regulated by RpoS, ANR and FleQ, and the functionality of CfcR as a diguanylate cyclase requires the multisensor CHASE3/GAF hybrid histidine kinase named CfcA. Here an additional level of cfcR control, operating post‐transcriptionally via the RNA‐binding proteins RsmA, RsmE and RsmI, is unraveled. Specific binding of the three proteins to an Rsm‐binding motif (5′CANGGANG3′) encompassing the translational start codon of cfcR was confirmed. Although RsmA exhibited the highest binding affinity to the cfcR transcript, single deletions of rsmA, rsmE or rsmI caused minor derepression in CfcR translation compared to a ΔrsmIEA triple mutant. RsmA also showed a negative impact on c‐di‐GMP levels in a double mutant ΔrsmIE through the control of cfcR, which is responsible for most of the free c‐di‐GMP during stationary phase in static conditions. In addition, a CfcR‐dependent c‐di‐GMP boost was observed during this stage in ΔrsmIEA confirming the negative effect of Rsm proteins on CfcR translation and explaining the increased biofilm formation in this mutant compared to the wild type. Overall, these results suggest that CfcR is a key player in biofilm formation regulation by the Rsm proteins in P. putida.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database

          The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.

            Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria.

              A simple procedure for cloning and stable insertion of foreign genes into the chromosomes of gram-negative eubacteria was developed by combining in two sets of plasmids (i) the transposition features of Tn10 and Tn5; (ii) the resistances to the herbicide bialaphos, to mercuric salts and organomercurial compounds, and to arsenite, and (iii) the suicide delivery properties of the R6K-based plasmid pGP704. The resulting constructions contained unique NotI or SfiI sites internal to either the Tn10 or the Tn5 inverted repeats. These sites were readily used for cloning DNA fragments with the help of two additional specialized cloning plasmids, pUC18Not and pUC18Sfi. The newly derived constructions could be maintained only in donor host strains that produce the R6K-specified pi protein, which is an essential replication protein for R6K and plasmids derived therefrom. Donor plasmids containing hybrid transposons were transformed into a specialized lambda pir lysogenic Escherichia coli strain with a chromosomally integrated RP4 that provided broad-host-range conjugal transfer functions. Delivery of the donor plasmids into selected host bacteria was accomplished through mating with the target strain. Transposition of the hybrid transposon from the delivered suicide plasmid to a replicon in the target cell was mediated by the cognate transposase encoded on the plasmid at a site external to the transposon. Since the transposase function was not maintained in target cells, such cells were not immune to further transposition rounds. Multiple insertions in the same strain are therefore only limited by the availability of distinct selection markers. The utility of the system was demonstrated with a kanamycin resistance gene as a model foreign insert into Pseudomonas putida and a melanin gene from Streptomyces antibioticus into Klebsiella pneumoniae. Because of the modular nature of the functional parts of the cloning vectors, they can be easily modified and further selection markers can be incorporated. The cloning system described here will be particularly useful for the construction of hybrid bacteria that stably maintain inserted genes, perhaps in competitive situations (e.g., in open systems and natural environments), and that do not carry antibiotic resistance markers characteristic of most available cloning vectors (as is currently required of live bacterial vaccines).
                Bookmark

                Author and article information

                Contributors
                maribel.ramos@eez.csic.es
                Journal
                Environ Microbiol
                Environ. Microbiol
                10.1111/(ISSN)1462-2920
                EMI
                Environmental Microbiology
                John Wiley and Sons Inc. (Hoboken )
                1462-2912
                1462-2920
                21 July 2017
                September 2017
                : 19
                : 9 ( doiID: 10.1111/emi.2017.19.issue-9 )
                : 3551-3566
                Affiliations
                [ 1 ] Department of Environmental Protection Estación Experimental del Zaidín, CSIC Profesor Albareda, 1, Granada 18008 Spain
                [ 2 ] Centre for Biomolecular Sciences, School of Life Sciences University of Nottingham Nottingham NG7 2RD UK
                Author notes
                [*] [* ]For correspondence. E‐mail maribel.ramos@ 123456eez.csic.es ; Tel. 34 958181600; Fax 34 958181609.
                Article
                EMI13848
                10.1111/1462-2920.13848
                6849547
                28677348
                c62f0c88-2687-4059-a55e-f46ae85aa59a
                © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 March 2017
                : 21 June 2017
                : 23 June 2017
                Page count
                Figures: 10, Tables: 2, Pages: 16, Words: 10963
                Funding
                Funded by: Ministerio de Economía y Competitividad and EFDR , open-funder-registry 10.13039/501100003329;
                Award ID: BFU2010‐17946, BFU2013‐43469‐P and BFU2016‐80122‐P
                Funded by: FPI predoctoral scholarship
                Award ID: EEBB‐BES‐2011‐047539
                Funded by: United Kingdom Engineering and Physical Sciences Research Council
                Award ID: EP/N006615/1
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                September 2017
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.1 mode:remove_FC converted:12.11.2019

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content402

                Cited by14

                Most referenced authors979