Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440.

      Environmental Microbiology
      Bacterial Adhesion, physiology, Bacterial Outer Membrane Proteins, Bacterial Proteins, Iron, metabolism, Plant Roots, microbiology, Pseudomonas putida, genetics, growth & development, Seeds, Zea mays

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe the first two-partner secretion system known to play a role in mutualistic plant-bacterial interactions, identified in the soil and rhizosphere-colonizing bacterium Pseudomonas putida KT2440. The genes coding for the two components of the system are organized in an operon, which we have named hlpBA. HlpA is a secreted protein that has similarities with iron-regulated haemolysins, while HlpB would be responsible for the activation and transport of HlpA across the outer membrane. Mutations in this novel two-partner secretion system result in reduced capacity to colonize corn seeds. When introduced in the rhizosphere, hlpA and hlpB mutants show no competitive disadvantage, but the number of cells attached to the root surface is reduced with respect to the wild type, suggesting this protein plays a role directly in the bacterial cell-root surface interaction. Under iron-limiting conditions, the presence of a truncated HlpA causes reduced viability and high levels of siderophore release. These data further strengthen our previous observations indicating the importance of iron acquisition for attachment of P. putida KT2440 to plant surfaces.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content668

          Cited by17