28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditionally, generation of new plants with improved or desirable features has relied on laborious and time-consuming breeding techniques. Genome-editing technologies have led to a new era of genome engineering, enabling an effective, precise, and rapid engineering of the plant genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) has emerged as a new genome-editing tool, extensively applied in various organisms, including plants. The use of CRISPR/Cas9 allows generating transgene-free genome-edited plants (“null segregants”) in a short period of time. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9 derived technologies for inducing mutations at target sites in the genome and controlling the expression of target genes. We highlight the major breakthroughs in applying CRISPR/Cas9 to plant engineering, and challenges toward the production of null segregants. We also provide an update on the efforts of engineering Cas9 proteins, newly discovered Cas9 variants, and novel CRISPR/Cas systems for use in plants. The application of CRISPR/Cas9 and related technologies in plant engineering will not only facilitate molecular breeding of crop plants but also accelerate progress in basic research.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements

          CRISPR-Cas9 is poised to become the gene editing tool of choice in clinical contexts. Thus far, exploration of Cas9-induced genetic alterations has been limited to the immediate vicinity of the target site and distal off-target sequences, leading to the conclusion that CRISPR-Cas9 was reasonably specific. Here we report significant on-target mutagenesis, such as large deletions and more complex genomic rearrangements at the targeted sites in mouse embryonic stem cells, mouse hematopoietic progenitors and a human differentiated cell line. Using long-read sequencing and long-range PCR genotyping, we show that DNA breaks introduced by single-guide RNA/Cas9 frequently resolved into deletions extending over many kilobases. Furthermore, lesions distal to the cut site and crossover events were identified. The observed genomic damage in mitotically active cells caused by CRISPR-Cas9 editing may have pathogenic consequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            CRISPR/Cas9 in Genome Editing and Beyond

            The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA

              Editing plant genomes is technically challenging in hard-to-transform plants and usually involves transgenic intermediates, which causes regulatory concerns. Here we report two simple and efficient genome-editing methods in which plants are regenerated from callus cells transiently expressing CRISPR/Cas9 introduced as DNA or RNA. This transient expression-based genome-editing system is highly efficient and specific for producing transgene-free and homozygous wheat mutants in the T0 generation. We demonstrate our protocol to edit genes in hexaploid bread wheat and tetraploid durum wheat, and show that we are able to generate mutants with no detectable transgenes. Our methods may be applicable to other plant species, thus offering the potential to accelerate basic and applied plant genome-engineering research.
                Bookmark

                Author and article information

                Contributors
                kosakabe@tokushima-u.ac.jp
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                25 May 2020
                25 May 2020
                2020
                : 20
                : 234
                Affiliations
                GRID grid.267335.6, ISNI 0000 0001 1092 3579, Graduate School of Technology, Industrial and Social Sciences, , Tokushima University, ; Tokushima, Japan
                Article
                2385
                10.1186/s12870-020-02385-5
                7249668
                32450802
                c5f50c0a-4ed6-484e-840a-bfcb2daf6fb3
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 August 2019
                : 5 April 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100009035, Program on Open Innovation Platform with Enterprises, Research Institute and Academia;
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: JP19H02932
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Plant science & Botany
                plant genome engineering,null segregant,crispr/cas9,crispr/dcas9
                Plant science & Botany
                plant genome engineering, null segregant, crispr/cas9, crispr/dcas9

                Comments

                Comment on this article