4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expert opinions on the regulation of plant genome editing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Global food security is largely affected by factors such as environmental (e.g. drought, flooding), social (e.g. gender inequality), socio‐economic (e.g. overpopulation, poverty) and health (e.g. diseases). In response, extensive public and private investment in agricultural research has focused on increasing yields of staple food crops and developing new traits for crop improvement. New breeding techniques pioneered by genome editing have gained substantial traction within the last decade, revolutionizing the plant breeding field. Both industry and academia have been investing and working to optimize the potentials of gene editing and to bring derived crops to market. The spectrum of cutting‐edge genome editing tools along with their technical differences has led to a growing international regulatory, ethical and societal divide. This article is a summary of a multi‐year survey project exploring how experts view the risks of new breeding techniques, including genome editing and their related regulatory requirements. Surveyed experts opine that emerging biotechnologies offer great promise to address social and climate challenges, yet they admit that the market growth of genome‐edited crops will be limited by an ambiguous regulatory environment shaped by societal uncertainty.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficient genome editing in plants using a CRISPR/Cas system

          Dear Editor, In the past few years, the development of sequence-specific DNA nucleases has progressed rapidly and such nucleases have shown their power in generating efficient targeted mutagenesis and other genome editing applications. For zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), an engineered array of sequence-specific DNA binding domains are fused with the DNA nuclease Fok1 1,2 . These nucleases have been successful in genome modifications by generating double strand breaks (DSBs), which are then repaired through non-homologous end joining (NHEJ) or homologous recombination (HR) in different species, including mouse, tobacco and rice 3,4,5 . Recently, another breakthrough technology for genome editing, the CRISPR/Cas system, was developed. CRISPR (clustered regulatory interspaced short palindromic repeats) loci are variable short spacers separated by short repeats, which are transcribed into non-coding RNAs. The non-coding RNAs form a functional complex with CRISPR-associated (Cas) proteins and guide the complex to cleave complementary invading DNA 6 . After the initial development of a programmable CRISPR/Cas system, it has been rapidly applied to achieve efficient genome editing in human cell lines, zebrafish and mouse 7,8,9,10 . However, there is still no successful application in plants reported. We report here that the CRISPR/Cas system can be used to efficiently generate targeted gene mutations and corrections in plants. The Cas9 gene was driven by the CaMV 35S promoter and the chimeric single guide RNA (sgRNA) was driven by the AtU6-26 promoter in Arabidopsis or the OsU6-2 promoter in rice. We show that the engineered CRISPR/Cas was active in creating DSBs when transiently expressed in Arabidopsis protoplasts and stably expressed in transgenic Arabidopsis and rice plants. Our results demonstrate the feasibility of using engineered CRISPR/Cas as molecular scissors to create DSBs at specific sites of the plant genome to achieve targeted genome modifications in both dicot and monocot plants. We used the optimized coding sequence of hSpCas9 9 driven by the CaMV 35S promoter. For the non-coding RNA components of CRISPR, we expressed the sgRNA using native promoters for U6 RNAs in Arabidopsis (Figure 1A and Supplementary information, Figure S1A) or rice (Supplementary information, Figure S1A). The target site precedes an NGG, the requisite protospacer adjacent motif (PAM). To improve co-delivery, both the sgRNA and hSpCas9 were subcloned into one expression vector (Figure 1A). A split yellow fluorescent protein (YFP) reporter system, YF-FP, was used to test the functionality of the engineered CRISPR/Cas system in Arabidopsis protoplasts (Figure 1B). Co-transformation of the YF-FP reporter and the CRISPR/Cas construct led to the production of strong YFP signal with gene correction rate by HR at 18.8% ((4.76%–0.78%)/21.23%) (Figure 1C). The results suggest that the engineered CRISPR/Cas system is highly functional in generating DSBs on target DNA sequences in plant cells and that the DSBs can be repaired by HR to achieve gene correction. Having successfully targeted a reporter gene in protoplasts, we started to target endogenous loci in plants. The Arabidopsis genes BRASSINOSTEROID INSENSITIVE 1 (BRI1), JASMONATE-ZIM-DOMAIN PROTEIN 1 (JAZ1) and GIBBERELLIC ACID INSENSITIVE (GAI) and the rice genes Rice Outermost Cell-specific gene5 (ROC5), Stromal Processing Peptidase (SPP) and Young Seedling Albino (YSA) were selected for CRISPR/Cas-based disruption (Supplementary information, Figure S1B). These genes were selected owing to obvious growth phenotypes when they are dysfunctional. We designed sgRNAs to target these genes (Supplementary information, Figure S1C). The targets contained restriction enzyme sites close to the PAM sequences, so that the restriction sites may be disrupted when successfully targeted by the CRISPR/Cas (Supplementary information, Figure S2), and RFLP (Restriction Fragment Length Polymorphism) analysis can be used to detect mutations in the target region. The vector containing the Cas9 and sgRNA expression cassette was introduced into plants by Agrobacterium-mediated transformation using floral dipping in Arabidopsis and tissue culture in rice. More than 50 T1 and 20 T0 transgenic plants were generated for each target in Arabidopsis and rice, respectively (Figure 1D). We observed that a high percentage of the Arabidopsis T1 transgenic plants showed growth phenotypes at a very young stage (one week after transplanting in soil) (Figure 1D). For BRI1, more than 50% plants displayed retarded growth and rolling leaves (Figure 1D and 1E), which are expected for bri1 mutant plants. More than a quarter of the T1 plants for GAI also showed a dwarf phenotype (Figure 1D). At later stages, some continued to exhibit a dwarf phenotype that was similar to bri1 or gai mutant plants (Figure 1F and Supplementary information, Figure S1D). The designed target for GAI is located in the DELLA domain (Supplementary information, Figure S1C), which is important for GA-induced degradation of the GAI protein. It is known that amino acid substitutions or deletions in the DELLA domain of GAI would result in insensitivity to GA-induced degradation, leading to a dwarf phenotype. About 10% of T0 transgenic rice plants targeting YSA showed the expected albino leaf phenotype at the seedling stage (Figure 1D and 1G). We genotyped transgenic plants first by RFLP analysis. Clear undigested bands were observed (Figure 1H and 1I). The failure of restriction enzyme digestion suggested the occurrence of DNA sequence mutations in the target regions. We then sequenced the PCR products to see whether there are additional sequence peaks in the target. Results from the two tests showed that the mutation frequency was very high in both Arabidopsis and rice, ranging from 26% (8 out of 31) to 84% (16 out of 19), except for the SPP sgRNA1 target (5%, 1 out of 21) (Figure 1D). Furthermore, the undigested bands from RFLP analysis were cloned and sequenced. We found that in 24 out of the 27 Arabidopsis T1 transgenic plants and 14 out of the 24 rice T0 transgenic plants subjected to sequencing, there were 2 or more different mutated alleles in one single transgenic plant (Figure 1J–1K, Supplementary information, Tables S1 and S2). These plants all contained mutant alleles with small insertions or deletions (indels) at the target sites (Supplementary information, Figures S3–S11). The presence of multiple mutated alleles in the Arabidopsis transgenic plants indicated that in these plants the CRISPR/Cas did not function or certainly did not complete the genome editing during the fertilization stage, and the editing activity continued after the division of fertilized eggs. Regardless, the high frequency of Arabidopsis T1 transgenic plants showing the expected mutant phenotypes suggests that some of the mutations must have been generated very early in development and possibly in early meristematic cells. Therefore, germ line transmission of some of the mutations into T2 plants is expected for many, if not all, of the T1 plants. The identification of 3 bp deletions (which would result in an amino acid deletion) in 2 out of the 3 GAI sgRNA1 T1 transgenic plants (Supplementary information, Figure S6) could well explain the high-frequency dwarf phenotype observed (Supplementary information, Figure S1D). It is also worth noting that one rice T0 transgenic line for ROC5 sgRNA1 (data not shown) and two each for YSA sgRNA1 (Figure 1I, lane 13 and data not shown) and sgRNA2 (data not shown) showed only mutated alleles and no wild-type allele in the RFLP analysis. Sequencing of individual clones revealed that the plants contained only or mostly mutated alleles (Supplementary information, Table S2, Figures S8, S10, S11). Especially for the ROC5 sgRNA1 and YSA sgRNA1 lines, they contained one or two types of mutated alleles only. Importantly, the YSA sgRNA1 rice plants showed the expected albino leaf phenotype (Figure 1G). The result suggests that these rice plants are likely homozygous or bi-allelic mutants, which implies that in this case the CRISPR/Cas may have completed the generation of DSBs in the first meristematic cell during regeneration of the rice plants from transgenic calli. To our knowledge, this is the first study demonstrating highly efficient targeted mutagenesis in multiple genes in Arabidopsis and rice using engineered CRISPR/Cas. Although future studies are needed to examine the germ line transmission and heritability of the CRISPR/Cas-induced mutations and to evaluate any potential off-target effects of the CRISPR/Cas, our results here suggest that the CRISPR/Cas technology will make targeted gene editing a routine practice not only in model plants but also in crops. Detailed methods are described in the Supplementary information, Data S1 and Table S3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic strategies for improving crop yields

            The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922

              Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice.
                Bookmark

                Author and article information

                Contributors
                rim.lassoued@usask.ca
                Journal
                Plant Biotechnol J
                Plant Biotechnol J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                11 May 2021
                June 2021
                : 19
                : 6 ( doiID: 10.1111/pbi.v19.6 )
                : 1104-1109
                Affiliations
                [ 1 ] Department of Agricultural and Resource Economics University of Saskatchewan Saskatoon SK Canada
                [ 2 ] The Johnson Shoyama Graduate School of Public Policy University of Saskatchewan Saskatoon SK Canada
                Author notes
                [*] [* ] Correspondence (Tel +1 306 966 4027; fax +1 306 966 8413; email rim.lassoued@ 123456usask.ca )

                Author information
                https://orcid.org/0000-0002-7435-9935
                https://orcid.org/0000-0003-0837-8617
                Article
                PBI13597
                10.1111/pbi.13597
                8196660
                33834596
                069b387b-afc8-443c-8e50-4f29a8a8adfc
                © 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 09 March 2021
                : 21 January 2021
                : 03 April 2021
                Page count
                Figures: 0, Tables: 1, Pages: 6, Words: 5997
                Funding
                Funded by: Canada First Research Excellence Fund , open-funder-registry 10.13039/501100010785;
                Categories
                Review
                Review
                Custom metadata
                2.0
                June 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.2 mode:remove_FC converted:12.06.2021

                Biotechnology
                crispr,food security,innovation,new breeding techniques,risk,uncertainty
                Biotechnology
                crispr, food security, innovation, new breeding techniques, risk, uncertainty

                Comments

                Comment on this article