15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          NOS1AP single-nucleotide polymorphisms (SNPs) correlate with QT prolongation and cardiac sudden death in patients affected by long QT syndrome type 1 (LQT1). NOS1AP targets NOS1 to intracellular effectors. We hypothesize that NOS1AP SNPs cause NOS1 dysfunction and this may converge with prolonged action-potential duration (APD) to facilitate arrhythmias. Here we test (i) the effects of NOS1 inhibition and their interaction with prolonged APD in a guinea pig cardiomyocyte (GP-CMs) LQT1 model; (ii) whether pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from LQT1 patients differing for NOS1AP variants and mutation penetrance display a phenotype compatible with NOS1 deficiency.

          Methods and results

          In GP-CMs, NOS1 was inhibited by S-Methyl-L-thiocitrulline acetate (SMTC) or Vinyl-L-NIO hydrochloride (L-VNIO); LQT1 was mimicked by IKs blockade (JNJ303) and β-adrenergic stimulation (isoproterenol). hiPSC-CMs were obtained from symptomatic (S) and asymptomatic (AS) KCNQ1-A341V carriers, harbouring the minor and major alleles of NOS1AP SNPs (rs16847548 and rs4657139), respectively. In GP-CMs, NOS1 inhibition prolonged APD, enhanced ICaL and INaL, slowed Ca2+ decay, and induced delayed afterdepolarizations. Under action-potential clamp, switching to shorter APD suppressed ‘transient inward current’ events induced by NOS1 inhibition and reduced cytosolic Ca2+. In S (vs. AS) hiPSC-CMs, APD was longer and ICaL larger; NOS1AP and NOS1 expression and co-localization were decreased.

          Conclusion

          The minor NOS1AP alleles are associated with NOS1 loss of function. The latter likely contributes to APD prolongation in LQT1 and converges with it to perturb Ca2+ handling. This establishes a mechanistic link between NOS1AP SNPs and aggravation of the arrhythmia phenotype in prolonged repolarization syndromes.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac excitation-contraction coupling.

          Of the ions involved in the intricate workings of the heart, calcium is considered perhaps the most important. It is crucial to the very process that enables the chambers of the heart to contract and relax, a process called excitation-contraction coupling. It is important to understand in quantitative detail exactly how calcium is moved around the various organelles of the myocyte in order to bring about excitation-contraction coupling if we are to understand the basic physiology of heart function. Furthermore, spatial microdomains within the cell are important in localizing the molecular players that orchestrate cardiac function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting the Unpredictable

            Drug-induced long QT syndrome (diLQTS) and congenital LQTS (cLQTS) share many features, and both syndromes can result in life-threatening torsades de pointes (TdP). Our understanding of their mechanistic and genetic similarities has led to their improved clinical management. However, our inability to prevent diLQTS has resulted in removal of many medicines from the market and from development. Genetic and clinical risk factors for diLQTS and TdP are well known and raise the possibility of TdP prevention. Clinical decision support systems (CDSS) can scan the patient's electronic health records for clinical risk factors predictive of diLQTS and warn when a drug that can cause TdP is prescribed. CDSS have reduced prescriptions of QT-prolonging drugs, but these relatively small changes lack the power to reduce TdP. The growing genetic evidence linking diLQTS to cLQTS suggests that prevention of TdP in the future may require inclusion of both genetic and clinical predictors into CDSS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias.

              Genetic factors contribute to the risk of sudden death from cardiac arrhythmias. Here, positional cloning methods establish KVLQT1 as the chromosome 11-linked LQT1 gene responsible for the most common inherited cardiac arrhythmia. KVLQT1 is strongly expressed in the heart and encodes a protein with structural features of a voltage-gated potassium channel. KVLQT1 mutations are present in affected members of 16 arrhythmia families, including one intragenic deletion and ten different missense mutations. These data define KVLQT1 as a novel cardiac potassium channel gene and show that mutations in this gene cause susceptibility to ventricular tachyarrhythmias and sudden death.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cardiovascular Research
                Oxford University Press (OUP)
                0008-6363
                1755-3245
                February 01 2021
                January 21 2021
                February 15 2020
                February 01 2021
                January 21 2021
                February 15 2020
                : 117
                : 2
                : 472-483
                Affiliations
                [1 ]Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 2016 Milano, Italy
                [2 ]Department of Cardiothoracic and Vascular Sciences, Fondazione IRCCS Policlinico San Matteo - Laboratory of Experimental Cardiology for Cell and Molecular Therapies, Viale Camillo Golgi 19, 27100 Pavia, Italy
                [3 ]Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Via Pier Lombardo 22, 20135 Milan, Italy
                [4 ]Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
                [5 ]Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
                [6 ]Department of Medicine, University of Stellenbosch, Tygerberg, South Africa
                [7 ]Unit of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
                [8 ]Department of Medicine, University of Cape Town, Cape Town, South Africa
                [9 ]Cardiovascular Research Institute (CARIM), Maastricht University, Maastricht, Netherlands
                Article
                10.1093/cvr/cvaa036
                7820868
                32061134
                c560f106-cdb1-44b2-bc24-2d191006269e
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article