5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trojan Asteroid Satellites, Rings, and Activity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Lucy mission will encounter five Jupiter Trojans during its mission with three of the five already known to be multiple systems. These include a near-equal-mass binary, a small and widely separated satellite, and one intermediate-size satellite system. This chapter reviews the current state of knowledge of Trojan asteroid satellites in the context of similar satellite systems in other small body populations. The prospects for the detection of additional satellites as well as other near-body phenomena are considered. The scientific utility of satellites makes their observation with Lucy an important scientific priority for the mission.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The Unexpected Surface of Asteroid (101955) Bennu

          NASA’S Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth [1]. Bennu is a low-albedo B-type asteroid [2] that has been linked to organic-rich hydrated carbonaceous chondrites [3]. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Thus, the primary mission objective is to return a sample of Bennu to Earth that is pristine, i.e., not affected by these processes [4]. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu’s global properties; support selection of a sampling site; and document that site at sub-centimeter scales [5-11]. Here we consider early observations to understand how Bennu’s properties compare to pre-encounter expectations and the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modeling of Bennu’s thermal inertia [12] and radar polarization ratios [13]—which indicated a generally smooth surface covered by centimeter-scale particles—resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size, and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-m-diameter patches of loose regolith with grain sizes less than 2 cm [4]. We observe only a small number of apparently hazard-free regions, on the order of 5 to 20 meters in extent, the sampling of which poses a substantial challenge to mission success.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation

            Haumea—one of the four known trans-Neptunian dwarf planets—is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo’s rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea’s equator and the orbit of its satellite Hi’iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea’s spin period—that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea’s largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Photometric survey of binary near-Earth asteroids

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Space Science Reviews
                Space Sci Rev
                0038-6308
                1572-9672
                October 2023
                October 12 2023
                October 2023
                : 219
                : 7
                Article
                10.1007/s11214-023-01001-w
                c502ec27-3ef6-4491-9297-2b9ecfabc7a8
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article