19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Haumea—one of the four known trans-Neptunian dwarf planets—is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo’s rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea’s equator and the orbit of its satellite Hi’iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea’s spin period—that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea’s largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A collisional family of icy objects in the Kuiper belt.

          The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Density of asteroids

              A considerable amount of information regarding the processes that occurred during the accretion of the early planetesimals is still present among the small bodies of our solar system. A review of our current knowledge of the density of small bodies is presented here. Intrinsic physical properties of small bodies are sought by searching for relationships between the dynamical and taxonomic classes, size, and density. Mass and volume estimates for 287 small bodies are collected from the literature. The accuracy and biases affecting the methods used to estimate these quantities are discussed and best-estimates are strictly selected. Bulk densities are subsequently computed and compared with meteorite density, allowing to estimate the macroporosity within these bodies. Dwarf-planets apparently have no macroporosity, while smaller bodies can have large voids. This trend is apparently correlated with size: C and S-complex asteroids tends to have larger density with increasing diameter. The average density of each Bus-DeMeo taxonomic classes is computed. S-complex asteroids are more dense on average than those in the C-complex that in turn have a larger macroporosity, although both complexes partly overlap. Within the C-complex, B-types stand out in albedo, reflectance spectra, and density, indicating a unique composition. Asteroids in the X-complex span a wide range of densities, suggesting that many compositions are included in the complex. Comets and TNOs have high macroporosity and low density, supporting the current models of internal structures made of icy aggregates. The number of density estimates sky-rocketed during last decade from a handful to 287, but only a third of the estimates are more precise than 20%. Several lines of investigation to refine this are contemplated, including observations of multiple systems, 3-D shape modeling, and orbital analysis from Gaia astrometry.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                October 11 2017
                October 11 2017
                : 550
                : 7675
                : 219-223
                Article
                10.1038/nature24051
                05cf7364-af9c-425d-ac80-869c9a494527
                © 2017
                History

                Comments

                Comment on this article