60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TLR7-dependent and FcγR-independent production of type I interferon in experimental mouse lupus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased type I interferon (IFN-I) production and IFN-stimulated gene (ISG) expression are linked to the pathogenesis of systemic lupus erythematosus (SLE). Although the mechanisms responsible for dysregulated IFN-I production in SLE remain unclear, autoantibody-mediated uptake of endogenous nucleic acids is thought to play a role. 2,6,10,14-tetramethylpentadecane (TMPD; also known as pristane) induces a lupus-like disease in mice characterized by immune complex nephritis with autoantibodies to DNA and ribonucleoproteins. We recently reported that TMPD also causes increased ISG expression and that the development of the lupus is completely dependent on IFN-I signaling (Nacionales, D.C., K.M. Kelly-Scumpia, P.Y. Lee, J.S. Weinstein, R. Lyons, E. Sobel, M. Satoh, and W.H. Reeves. 2007. Arthritis Rheum. 56:3770–3783). We show that TMPD elicits IFN-I production, monocyte recruitment, and autoantibody production exclusively through a Toll-like receptor (TLR) 7– and myeloid differentiation factor 88 (MyD88)–dependent pathway. In vitro studies revealed that TMPD augments the effect of TLR7 ligands but does not directly activate TLR7 itself. The effects of TMPD were amplified by the Y-linked autoimmune acceleration cluster, which carries a duplication of the TLR7 gene. In contrast, deficiency of Fcγ receptors (FcγRs) did not affect the production of IFN-I. Collectively, the data demonstrate that TMPD-stimulated IFN-I production requires TLR7/MyD88 signaling and is independent of autoantibody-mediated uptake of ribonucleoproteins by FcγRs.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

          Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.

            Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression "signature" served as a marker for more severe disease involving the kidneys, hematopoetic cells, and/or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function.

              MyD88, originally isolated as a myeloid differentiation primary response gene, is shown to act as an adaptor in interleukin-1 (IL-1) signaling by interacting with both the IL-1 receptor complex and IL-1 receptor-associated kinase (IRAK). Mice generated by gene targeting to lack MyD88 have defects in T cell proliferation as well as induction of acute phase proteins and cytokines in response to IL-1. Increases in interferon-gamma production and natural killer cell activity in response to IL-18 are abrogated. In vivo Th1 response is also impaired. Furthermore, IL-18-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK) is blocked in MyD88-/- Th1-developing cells. Taken together, these results demonstrate that MyD88 is a critical component in the signaling cascade that is mediated by IL-1 receptor as well as IL-18 receptor.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                22 December 2008
                : 205
                : 13
                : 2995-3006
                Affiliations
                [1 ]Division of Rheumatology and Clinical Immunology and Center for Autoimmune Disease and [2 ]Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
                [3 ]Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
                [4 ]Division of Rheumatology and Infectious Diseases, Department of Internal Medicine, Fujita Health University, Toyoake, Aichi-Ken 470-1192, Japan
                [5 ]Department of Molecular Cell Biology, Free University Medical Center, 1007MB Amsterdam, Netherlands
                Author notes

                CORRESPONDENCE Pui Y. Lee: puilee05@ 123456ufl.edu

                Article
                20080462
                10.1084/jem.20080462
                2605237
                19047436
                c48aede0-1f93-422a-b0a5-d9041bb49275
                © 2008 Lee et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 5 March 2008
                : 3 November 2008
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article