4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Profiles of parabens and their metabolites in paired maternal-fetal serum, urine and amniotic fluid and their implications for placental transfer

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure.

          Despite the widespread usage of phthalates and parabens in personal care products (PCPs), little is known about concentrations and profiles as well as human exposure to these compounds through the use of PCPs. In this study, nine phthalates and six parabens were determined in 170 PCPs (41 rinse-off and 109 leave-on), including 20 baby care products collected from Albany, New York. Phthalates were less frequently found in rinse-off PCPs but were more frequently found in perfumes (detection frequency of 100% for diethyl phthalate [DEP], 67% for dibutyl phthalate [DBP]), skin toners (90% for DEP), and nail polishes (90% for DBP). Parabens were found in ∼40% of rinse-off products and ∼60% of leave-on products. The highest concentrations of DEP, DBP, methyl- (MeP), ethyl- (EtP), propyl- (PrP), and butyl parabens (BuP) were on the order of 1000 μg per gram of the product. On the basis of amount and frequency of use of PCPs and the measured median concentrations of target analytes, the total dermal intake doses (sum of all phthalates or parabens) were calculated to be 0.37 and 31.0 μg/kg-bw/day for phthalates and parabens, respectively, for adult females. The calculated dermal intake of phthalates from PCPs was lower for infants and toddlers than for adult females. In contrast, dermal intake of parabens from PCPs by infants and toddlers was higher than that for adult females. The calculated maximum daily exposure dose of MeP, EtP, and PrP from PCPs ranged between 58.6 and 766 μg/kg-bw/day for infants and toddlers, which was 3 times higher than that calculated for adult females. PCPs are an important source of human exposure to parabens; the contribution of PCPs to phthalate exposure is low, except for DEP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review

            Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Exposure to Phthalates and Phenols during Pregnancy and Offspring Size at Birth

              Background: Data concerning the effects of prenatal exposures to phthalates and phenols on fetal growth are limited in humans. Previous findings suggest possible effects of some phenols on male birth weight. Objective: Our aim was to assess the relationships between prenatal exposures to phthalates and phenols and fetal growth among male newborns. Methods: We conducted a case–control study on male malformations of the genitalia nested in two French mother–child cohorts with recruitment between 2002 and 2006. We measured, in maternal urinary samples collected between 6 and 30 gestational weeks, the concentrations (micrograms per liter) of 9 phenol (n = 191 pregnant women) and 11 phthalate metabolites (n = 287). Weight, length, and head circumference at birth were collected from maternity records. Statistical analyses were corrected for the oversampling of malformation cases. Results: Adjusted birth weight decreased by 77 g [95% confidence interval (CI): –129, –25] and by 49 g (95% CI: –86, –13) in association with a 1-unit increase in ln-transformed 2,4-dichlorophenol (DCP) and 2,5-DCP urinary concentrations, respectively. Benzophenone-3 (BP3) ln-transformed concentrations were positively associated with weight (26 g; 95% CI: –2, 54) and head circumference at birth (0.1 cm; 95% CI: 0.0, 0.2). Head circumference increased by 0.3 cm (95% CI: 0.0, 0.7) in association with a 1-unit increase in ln-transformed BPA concentration. For phthalate metabolites there was no evidence of monotonic associations with birth weight. Conclusions: Consistent with findings of a previous study, we observed evidence of an inverse association of 2,5-DCP and a positive association of BP3 with male birth weight.
                Bookmark

                Author and article information

                Journal
                Ecotoxicology and Environmental Safety
                Ecotoxicology and Environmental Safety
                Elsevier BV
                01476513
                March 2020
                March 2020
                : 191
                : 110235
                Article
                10.1016/j.ecoenv.2020.110235
                c43e43b4-9b17-482e-adb0-b5c2fea9b7e7
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article