3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Occurrence and transfer of benzophenone-type ultraviolet filters from the pregnant women to fetuses

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Prenatal Phenol and Phthalate Exposures and Birth Outcomes

          Background Many phthalates and phenols are hormonally active and are suspected to alter the course of development. Objective We investigated prenatal exposures to phthalate and phenol metabolites and their associations with body size measures of the infants at birth. Methods We measured 5 phenol and 10 phthalate urinary metabolites in a multiethnic cohort of 404 women in New York City during their third trimester of pregnancy and recorded size of infants at birth. Results Median urinary concentrations were > 10 μg/L for 2 of 5 phenols and 6 of 10 phthalate monoester metabolites. Concentrations of low-molecular-weight phthalate monoesters (low-MWP) were approximately 5-fold greater than those of high-molecular-weight metabolites. Low-MWP metabolites had a positive association with gestational age [0.97 day gestational age per ln-biomarker; 95% confidence interval (CI), 0.07–1.9 days, multivariate adjusted] and with head circumference. Higher prenatal exposures to 2,5-dichlorophenol (2,5-DCP) predicted lower birth weight in boys (−210 g average birth weight difference between the third tertile and first tertile of 2,5-DCP; 95% CI, 71–348 g). Higher maternal benzophenone-3 (BP3) concentrations were associated with a similar decrease in birth weight among girls but with greater birth weight in boys. Conclusions We observed a range of phthalate and phenol exposures during pregnancy in our population, but few were associated with birth size. The association of 2,5-DCP and BP3 with reduced or increased birth weight could be important in very early or small-size births. In addition, positive associations of urinary metabolites with some outcomes may be attributable partly to unresolved confounding with maternal anthropometric factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exposure to Phthalates and Phenols during Pregnancy and Offspring Size at Birth

            Background: Data concerning the effects of prenatal exposures to phthalates and phenols on fetal growth are limited in humans. Previous findings suggest possible effects of some phenols on male birth weight. Objective: Our aim was to assess the relationships between prenatal exposures to phthalates and phenols and fetal growth among male newborns. Methods: We conducted a case–control study on male malformations of the genitalia nested in two French mother–child cohorts with recruitment between 2002 and 2006. We measured, in maternal urinary samples collected between 6 and 30 gestational weeks, the concentrations (micrograms per liter) of 9 phenol (n = 191 pregnant women) and 11 phthalate metabolites (n = 287). Weight, length, and head circumference at birth were collected from maternity records. Statistical analyses were corrected for the oversampling of malformation cases. Results: Adjusted birth weight decreased by 77 g [95% confidence interval (CI): –129, –25] and by 49 g (95% CI: –86, –13) in association with a 1-unit increase in ln-transformed 2,4-dichlorophenol (DCP) and 2,5-DCP urinary concentrations, respectively. Benzophenone-3 (BP3) ln-transformed concentrations were positively associated with weight (26 g; 95% CI: –2, 54) and head circumference at birth (0.1 cm; 95% CI: 0.0, 0.2). Head circumference increased by 0.3 cm (95% CI: 0.0, 0.7) in association with a 1-unit increase in ln-transformed BPA concentration. For phthalate metabolites there was no evidence of monotonic associations with birth weight. Conclusions: Consistent with findings of a previous study, we observed evidence of an inverse association of 2,5-DCP and a positive association of BP3 with male birth weight.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review.

              Benzophenone-3 (BP-3) has been widely used in sunscreens and many other consumer products, including cosmetics. The widespread use of BP-3 has resulted in its release into the water environment, and hence its potential impact on aquatic ecosystem is of concern. To better understand the risk associated with BP-3 in aquatic ecosystems, we conducted a thorough review of available articles regarding the physicochemical properties, toxicokinetics, environmental occurrence, and toxic effects of BP-3 and its suspected metabolites. BP-3 is lipophilic, photostable, and bioaccumulative, and can be rapidly absorbed via oral and dermal routes. BP-3 is reported to be transformed into three major metabolites in vivo, i.e., benzophenone-1 (BP-1), benzophenone-8 (BP-8), and 2,3,4-trihydroxybenzophenone (THB). BP-1 has a longer biological half-life than its parent compound and exhibits greater estrogenic potency in vitro. BP-3 has been detected in water, soil, sediments, sludge, and biota. The maximum detected level in ambient freshwater and seawater is 125ng/L and 577.5ng/L, respectively, and in wastewater influent is 10,400ng/L. The major sources of BP-3 are reported to be human recreational activities and wastewater treatment plant (WWTP) effluents. BP-3 and its derivatives have been also detected in fish lipid. In humans, BP-3 has been detected in urine, serum, and breast milk samples worldwide. BP-1 has also been detected in placental tissues of delivering women. While sunscreens and cosmetics are known to be major sources of exposure, the fact that BP-3 has been detected frequently among young children and men suggests other sources. An increasing number of in vitro studies have indicated the endocrine disrupting capacity of BP-3. Based on a receptor binding assay, BP-3 has shown strong anti-androgenic and weak estrogenic activities but at the same time BP-3 displays anti-estrogenic activity as well. Predicted no effect concentration (PNEC) for BP-3 was derived at 1.32μg/L. The levels observed in ambient water are generally an order of magnitude lower than the PNEC, but in wastewater influents, hazard quotients (HQs) greater than 1 were noted. Considering limited ecotoxicological information and significant seasonal and spatial variations of BP-3 in water, further studies on environmental monitoring and potential consequences of long-term exposure in aquatic ecosystem are warranted.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                July 2020
                July 2020
                : 726
                : 138503
                Article
                10.1016/j.scitotenv.2020.138503
                32320878
                67fac935-edb6-44c7-9669-909a6c12e8f2
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article