63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.

          Related collections

          Most cited references311

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway

          Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2 . Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of planar polarity in animal development.

            Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak.

              Although FGF signaling plays an integral role in the migration and patterning of mesoderm at gastrulation, the mechanism and downstream targets of FGF activity have remained elusive. Here, we demonstrate that FGFR1 orchestrates the epithelial to mesenchymal transition and morphogenesis of mesoderm at the primitive streak by controlling Snail and E-cadherin expression. Furthermore, we show that FGFR1 functions in mesoderm cell fate specification by positively regulating Brachyury and Tbx6 expression. Finally, we provide evidence that the attenuation of Wnt3a signaling observed in Fgfr1 -/- embryos can be rescued by lowering E-cadherin levels. We propose that modulation of cytoplasmic beta-catenin levels, associated with FGF-induced downregulation of E-cadherin, provides a molecular link between FGF and Wnt signaling pathways at the streak.
                Bookmark

                Author and article information

                Journal
                Scientifica (Cairo)
                Scientifica (Cairo)
                SCIENTIFICA
                Scientifica
                Hindawi Publishing Corporation
                2090-908X
                2017
                13 February 2017
                : 2017
                : 5364827
                Affiliations
                1Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
                2Laboratory for Fetal and Regenerative Biology, Colorado Fetal Care Center, Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 12700 E 17th Ave, Aurora, CO 80045, USA
                3Training and Technical Division, Islamic Hospital, Abdali, Amman 2414, Jordan
                4Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
                Author notes
                *Noraishah M. Abdul-Aziz: noisha@ 123456ummc.edu.my

                Academic Editor: Heinz Hofler

                Author information
                http://orcid.org/0000-0002-4987-154X
                http://orcid.org/0000-0002-2194-791X
                http://orcid.org/0000-0002-2447-3211
                Article
                10.1155/2017/5364827
                5327787
                28286691
                c43955eb-b954-4329-8e9f-4bcc81e895d7
                Copyright © 2017 Siti W. Mohd-Zin et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 June 2016
                : 14 November 2016
                : 1 December 2016
                Funding
                Funded by: Universiti Malaya
                Award ID: UM.C/625/1/HIR/062–J-20011-73595
                Award ID: UM.C/625/1/HIR/148/2–J-20011-73843
                Award ID: PPP PG153-2015A
                Funded by: Ministry of Higher Education Malaysia
                Award ID: UM.C/625/1/HIR/MOHE/MED/08/04–E-000032
                Categories
                Review Article

                Comments

                Comment on this article