41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics

      review-article
      a , * , b
      Redox Biology
      Elsevier
      Apoptosis, Chemotherapeutic drugs, Nitric oxide, Nitrosylation, Sensitization, Trail DR5

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in target cells by immune cytokines (e.g. IFN- γ, IL-1, TNF- α, etc.) and resulting in the sensitization of resistant tumor cells to death ligands-induced apoptosis. Endogenous/exogenous NO mediated its immune sensitizing effect by inhibiting NF-κΒ activity and downstream, inactivating the repressor transcription factor YY1, which inhibited both Fas and DR5 expressions. In addition, NO-mediated inhibition of NF-κΒ activity and inhibition downstream of its anti-apoptotic gene targets sensitized the tumor cells to apoptosis by chemotherapeutic drugs. We have identified in tumor cells a dysregulated pro-survival/anti-apoptotic loop consisting of NF-κB/Snail/YY1/RKIP/PTEN and its modification by NO was responsible, in large, for the reversal of chemo and immune resistance and sensitization to apoptotic mechanisms by cytotoxic agents. Moreover, tumor cells treated with exogenous NO donors resulted in the inhibition of NF-κΒ activity via S-nitrosylation of p50 and p65, inhibition of Snail (NF-κΒ target gene), inhibition of transcription repression by S-nitrosylation of YY1 and subsequent inhibition of epithelial–mesenchymal transition (EMT), induction of RKIP (inhibition of the transcription repressor Snail), and induction of PTEN (inhibition of the repressors Snail and YY1). Further, each gene product modified by NO in the loop was involved in chemo-immunosensitization. These above findings demonstrated that NO donors interference in the regulatory circuitry result in chemo-immunosensitization and inhibition of EMT. Overall, these observations suggest the potential anti-tumor therapeutic effect of NO donors in combination with subtoxic chemo-immuno drugs. This combination acts on multiple facets including reversal of chemo-immune resistance, and inhibition of both EMT and metastasis.

          Graphical abstract

          Highlights

          • The induction of NO in tumor cells or exogenous NO donors reverse tumor cell resistance and chemo-immuno-sensitize the cells to apoptosis. The inhibition of the repressor YY1 by NO results in the upregulation of Fas and DR5 expressions on tumor cells and their sensitization to FasL, TRAIL and chemotherapeutic-induced apoptosis.

          • The mechanism by which NO mediates its sensitization is a result of its interference on the dysregulated pro-survival/anti-apoptotic NF-κΒ /Snail/YY1/RKIP/PTEN loop in tumor cells.

          • NO interference is the result of its direct inhibition of NF-κΒ, Snail, and YY1 and the induction of RKIP.

          • The inhibition of the repressor Snail and YY1 by NO results in the induction of RKIP and PTEN and inhibition of the pro-survival/anti-apoptotic NF-κΒ and AKT pathways, respectively.

          • NO donors are potential therapeutic agents to reverse resistance and to inhibit EMT and metastasis when used in combination with subtoxic chemo-immuno-cytotoxic agents.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          An essential role for NF-kappaB in preventing TNF-alpha-induced cell death.

          Studies on mice deficient in nuclear factor kappa B (NF-kappaB) subunits have shown that this transcription factor is important for lymphocyte responses to antigens and cytokine-inducible gene expression. In particular, the RelA (p65) subunit is required for induction of tumor necrosis factor-alpha (TNF-alpha)-dependent genes. Treatment of RelA-deficient (RelA-/-) mouse fibroblasts and macrophages with TNF-alpha resulted in a significant reduction in viability, whereas RelA+/+ cells were unaffected. Cytotoxicity to both cell types was mediated by TNF receptor 1. Reintroduction of RelA into RelA-/- fibroblasts resulted in enhanced survival, demonstrating that the presence of RelA is required for protection from TNF-alpha. These results have implications for the treatment of inflammatory and proliferative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PTEN-PI3K pathway: of feedbacks and cross-talks.

            The tumor suppressor PTEN was originally identified as a negative regulator of the phosphoinositide 3-kinase (PI3K) signaling, a main regulator of cell growth, metabolism and survival. Yet this function of PTEN is extremely relevant for its tumor-suppressive ability, albeit the recent characterization of many PI3K-independent tumor-suppressive activities. PI3K-mediated PIP(3) production leads to the activation of the canonical AKT-mTORC1 pathway. The implications of this signaling cascade in health and disease have been underscored by the high number of regulators within the pathway whose alterations give rise to different malignancies, including familiar syndromes, metabolic dysfunctions and cancer. Moreover, PI3K is tightly buffered at multiple levels by downstream components, which have turned this signaling pathway literally upside down. PI3K and its downstream components in turn cross-talk with a number of other pathways, thereby leading to a complex network of signals that may have dramatic consequences when perturbed. Here, we review the current status of the PTEN-PI3K signaling pathway with special emphasis on the most recent data on targets and regulation of the PTEN-PI3K axis. This provides novel provocative therapeutic implications based on the targeted modulation of PI3K-cross-talking signals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcription factor YY1: structure, function, and therapeutic implications in cancer biology.

              The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have a fundamental role in normal biologic processes such as embryogenesis, differentiation, replication, and cellular proliferation. YY1 exerts its effects on genes involved in these processes via its ability to initiate, activate, or repress transcription depending upon the context in which it binds. Mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes. YY1 activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression; however, these mechanisms have not yet been fully elucidated. Since expression and function of YY1 are known to be intimately associated with progression through phases of the cell cycle, the physiologic significance of YY1 activity has recently been applied to models of tumor biology. The majority of the data are consistent with the hypothesis that YY1 overexpression and/or activation is associated with unchecked cellular proliferation, resistance to apoptotic stimuli, tumorigenesis and metastatic potential. Studies involving hematopoetic tumors, epithelial-based tumors, endocrine organ malignancies, hepatocellular carcinoma, and retinoblastoma support this hypothesis. Molecular mechanisms that have been investigated include YY1-mediated downregulation of p53 activity, interference with poly-ADP-ribose polymerase, alteration in c-myc and nuclear factor-kappa B (NF-kappaB) expression, regulation of death genes and gene products, and differential YY1 binding in the presence of inflammatory mediators. Further, recent findings implicate YY1 in the regulation of tumor cell resistance to chemotherapeutics and immune-mediated apoptotic stimuli. Taken together, these findings provide strong support of the hypothesis that YY1, in addition to its regulatory roles in normal biologic processes, may possess the potential to act as an initiator of tumorigenesis and may thus serve as both a diagnostic and prognostic tumor marker; furthermore, it may provide an effective target for antitumor chemotherapy and/or immunotherapy. .Oncogene (2006) 25, 1125-1142. doi:10.1038/sj.onc.1209080; published online 28 November 2005.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                18 August 2015
                December 2015
                18 August 2015
                : 6
                : 486-494
                Affiliations
                [a ]Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
                [b ]NantBioScience, Inc., NantWorks, LLC., California NanoSystems Institute (CnSI) at the University of California, Los Angeles, CA 90095, USA
                Author notes
                [* ]Corresponding author. BBonavida@ 123456mednet.ucla.edu
                Article
                S2213-2317(15)00103-2
                10.1016/j.redox.2015.08.013
                4596920
                26432660
                c40d054d-e0e4-45cc-8a0f-8dd5d7599222
                © 2015 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 July 2015
                : 14 August 2015
                : 17 August 2015
                Categories
                Review Article

                apoptosis,chemotherapeutic drugs,nitric oxide,nitrosylation,sensitization,trail dr5

                Comments

                Comment on this article