This study investigated the mechanism of RP11-422N16.3 sponging miR-23b-3p in cell proliferation, apoptosis and epithelial-mesenchymal transition (EMT) in liver cancer.
Expressions of RP11-422N16.3, miR-23b-3p and dimethylglycine dehydrogenase (DMGDH) were determined in liver cancer tissues, adjacent normal tissues, hepatocellular carcinoma cell lines and normal liver epithelial cell line. Up-regulation of RP11-422N16.3 and down-regulation of miR-23b-3p were conducted in hepatocellular carcinoma cells. Bioinformatics analysis, luciferase reporter assay and RNA-pull down assay were performed to verify the relationship among miR-23b-3p, DMGDH, as well as RP11-422N16.3. Cell proliferation and cell apoptosis were determined by CCK-8 and Flow Cytometry analysis, respectively.
Expressions of RP11-422N16.3 and DMGDH were down-regulated while that of miR-23b-3p were up-regulated in hepatocellular carcinoma cancer tissues and cells. RP11-422N16.3 localized in cytoplasm and competitively bound to miR-23b-3p. Up-regulation of RP11-422N16.3 and down-regulation of miR-23b-3p contributed to increased expressions of DMGDH and E-cadherin, and decreased expressions of miR-23b-3p, ZEB1, Snail and Vimentin, resulting in inhibiting cell proliferation and promoting cell apoptosis. Inhibition of RP11-422N16.3 or overexpression of miR-23b-3p accelerated cell proliferation and slowed down cell apoptosis. miR-23b-3p inhibited the expression of DMGDH.