23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNA HOTAIR promotes cell migration by upregulating insulin growth factor–binding protein 2 in renal cell carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Renal cell carcinoma (RCC) is one of the most lethal urologic cancers. About one-third of RCC patients already have distal metastasis at the time of diagnosis. There is growing evidence that Hox antisense intergenic RNA (HOTAIR) plays essential roles in metastasis in several types of cancers. However, the precise mechanism by which HOTAIR enhances malignancy remains unclear, especially in RCC. Here, we demonstrated that HOTAIR enhances RCC-cell migration by regulating the insulin growth factor-binding protein 2 (IGFBP2) expression. HOTAIR expression in tumors was significantly correlated with nuclear grade, lymph-node metastasis, and lung metastasis. High HOTAIR expression was associated with a poor prognosis in both our dataset and The Cancer Genome Atlas dataset. Migratory capacity was enhanced in RCC cell lines in a HOTAIR-dependent manner. HOTAIR overexpression accelerated tumorigenicity and lung metastasis in immunodeficient mice. Microarray analysis revealed that IGFBP2 expression was upregulated in HOTAIR-overexpressing cells compared with control cells. The enhanced migration activity of HOTAIR-overexpressing cells was attenuated by IGFBP2 knockdown. IGFBP2 and HOTAIR were co-expressed in clinical RCC samples. Our findings suggest that the HOTAIR-IGFBP2 axis plays critical roles in RCC metastasis and may serve as a novel therapeutic target for advanced RCC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments.

          One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially expressed genes that does not originate from a sophisticated statistical model but rather from an analysis of biological reasoning. The new technique, which is based on calculating rank products (RP) from replicate experiments, is fast and simple. At the same time, it provides a straightforward and statistically stringent way to determine the significance level for each gene and allows for the flexible control of the false-detection rate and familywise error rate in the multiple testing situation of a microarray experiment. We use the RP technique on three biological data sets and show that in each case it performs more reliably and consistently than the non-parametric t-test variant implemented in Tusher et al.'s significance analysis of microarrays (SAM). We also show that the RP results are reliable in highly noisy data. An analysis of the physiological function of the identified genes indicates that the RP approach is powerful for identifying biologically relevant expression changes. In addition, using RP can lead to a sharp reduction in the number of replicate experiments needed to obtain reproducible results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics.

            Most of the human genome has now been sequenced and about 30,000 potential open reading frames have been identified, indicating that we use these 30,000 genes to functionally organize our biologic activities. However, functions of many genes are still unknown despite intensive efforts using bioinformatics as well as transgenic and knockout mice. Retrovirus-mediated gene transfer is a powerful tool that can be used to understand gene functions. We have developed a variety of retrovirus vectors and efficient packaging cell lines that have facilitated the development of efficient functional expression cloning methods. In this review, we describe retrovirus-mediated strategies used for investigation of gene functions and function-based screening strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Enhanced Expression of Long Non-Coding RNA HOTAIR Is Associated with the Development of Gastric Cancer

              The long non-coding RNA HOTAIR has been reported to be a poor prognostic biomarker in a variety of malignant tumors. However, little is known about the association of HOTAIR with gastric cancer. We examined the expression of HOTAIR in 68 gastric cancer samples using quantitative real-time RT-PCR and analyzed its correlation with the clinical parameters. The functional role of HOTAIR was examined by generating human gastric cancer cell lines with increased or suppressed HOTAIR expression. The anchorage -independent growth was assessed by soft agar assay. The increased or suppressed HOTAIR expressing gastric cancer cells were injected into the tail vein or peritoneal cavity of immunodeficient mice to examine the effect of this molecule on metastasis and peritoneal dissemination. The expression of HOTAIR was significantly higher in cancer lesions than in adjacent non-cancerous tissues in human gastric cancers. In the diffuse type of gastric cancer, the High-HOTAIR group (HOTAIR/GAPDH > 1) showed significantly more venous invasion, frequent lymph node metastases and a lower overall survival rate compared to the Low-HOTAIR group (HOTAIR/GAPDH < 1). Colony formation on the soft agar was enhanced in a HOTAIR-dependent manner. HOTAIR-expressing MKN74 formed more liver metastasis compared to control when they were injected into the tail vein of mice. In addition, reduced expression of HOTAIR in KATO III suppressed peritoneal dissemination. These results suggest that HOTAIR plays a pivotal role in the development of gastric cancer.
                Bookmark

                Author and article information

                Contributors
                tamaikeiichi@med.tohoku.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 September 2017
                20 September 2017
                2017
                : 7
                : 12016
                Affiliations
                [1 ]ISNI 0000 0004 5899 0430, GRID grid.419939.f, Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, ; Natori, Japan
                [2 ]ISNI 0000 0004 5899 0430, GRID grid.419939.f, Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, ; Natori, Japan
                [3 ]ISNI 0000 0004 5899 0430, GRID grid.419939.f, Department of Urology, , Miyagi Cancer Center, ; Natori, Japan
                [4 ]ISNI 0000 0004 5899 0430, GRID grid.419939.f, Department of Pathology, , Miyagi Cancer Center, ; Natori, Japan
                [5 ]ISNI 0000 0004 0372 2033, GRID grid.258799.8, Center for iPS Cell Research and Application, Kyoto University, ; Kyoto, Japan
                [6 ]ISNI 0000 0001 2248 6943, GRID grid.69566.3a, Department of Urology, , Tohoku University Graduate School of Medicine, ; Sendai, Japan
                Author information
                http://orcid.org/0000-0003-3622-2185
                Article
                12191
                10.1038/s41598-017-12191-z
                5607269
                28931862
                c4093feb-e8bb-4721-a047-a4b01482595e
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 March 2017
                : 6 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article