Search for authorsSearch for similar articles
53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New small-molecule drug design strategies for fighting resistant influenza A

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies–vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually takes at least 6 months to develop, anti-influenza small molecule drugs are more effective for the first line of protection against the virus during an epidemic outbreak, especially in the early stage. Two major classes of anti-influenza drugs currently available are admantane-based M2 protein blockers (amantadine and rimantadine) and neuraminidase (NA) inhibitors (oseltamivir, zanamivir, and peramivir). However, the continuous evolvement of influenza A virus and the rapid emergence of resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent need for developing new anti-influenza drugs against resistant forms of influenza A virus. In this review, we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant M2 proteins and neuraminidases, and other viral proteins not associated with current drugs.

          Graphical abstract

          Influenza A virus is the major cause of seasonal or pandemic flu worldwide. The continuous evolvement of influenza A virus and the rapid emergence of resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent need for developing new anti-influenza drugs against resistant forms of influenza A virus. In this review, we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant M2 proteins and neuraminidases, and other viral proteins not associated with current drugs.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I.

          The ubiquitin ligase TRIM25 mediates Lysine 63-linked ubiquitination of the N-terminal CARD domains of the viral RNA sensor RIG-I to facilitate type I interferon (IFN) production and antiviral immunity. Here, we report that the influenza A virus nonstructural protein 1 (NS1) specifically inhibits TRIM25-mediated RIG-I CARD ubiquitination, thereby suppressing RIG-I signal transduction. A novel domain in NS1 comprising E96/E97 residues mediates its interaction with the coiled-coil domain of TRIM25, thus blocking TRIM25 multimerization and RIG-I CARD domain ubiquitination. Furthermore, a recombinant influenza A virus expressing an E96A/E97A NS1 mutant is defective in blocking TRIM25-mediated antiviral IFN response and loses virulence in mice. Our findings reveal a mechanism by which influenza virus inhibits host IFN response and also emphasize the vital role of TRIM25 in modulating antiviral defenses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rational design of potent sialidase-based inhibitors of influenza virus replication.

            Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed. These compounds are effective inhibitors not only of the enzyme, but also of the virus in cell culture and in animal models. The results provide an example of the power of rational, computer-assisted drug design, as well as indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

              The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Acta Pharm Sin B
                Acta Pharm Sin B
                Acta Pharmaceutica Sinica. B
                Elsevier
                2211-3835
                2211-3843
                06 September 2015
                September 2015
                06 September 2015
                : 5
                : 5
                : 419-430
                Affiliations
                [a ]Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
                [b ]Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
                Author notes
                [* ]Corresponding author. Tel./fax: +86 21 64253299. kylou@ 123456ecust.edu.cn
                [** ]Corresponding author at: Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA. Tel.: +1 505 2770756; fax: +1 505 2772609. wwang@ 123456unm.edu
                Article
                S2211-3835(15)00114-8
                10.1016/j.apsb.2015.07.006
                4629447
                26579472
                c400ea36-fb43-47d3-9c74-2316760a0de2
                © 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 June 2015
                : 5 July 2015
                Categories
                Review

                influenza a virus,drug discovery,resistance,m2 ion channel,neuraminidase

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content406

                Cited by31

                Most referenced authors1,946