10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Selective incorporation of polyanionic molecules into hamster prions.

      The Journal of Biological Chemistry
      Amyloid, chemistry, metabolism, Animals, Catalysis, Cricetinae, Cricetulus, Female, Male, Polymers, PrPC Proteins, PrPSc Proteins, RNA, Ribonucleases, Scrapie, pathology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The central pathogenic event of prion disease is the conformational conversion of a host protein, PrPC, into a pathogenic isoform, PrPSc. We previously showed that the protein misfolding cyclic amplification (PMCA) technique can be used to form infectious prion molecules de novo from purified native PrPC molecules in an autocatalytic process requiring accessory polyanions (Deleault, N. R., Harris, B. T., Rees, J. R., and Supattapone, S. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 9741-9746). Here we investigated the molecular mechanism by which polyanionic molecules facilitate infectious prion formation in vitro. Ina PMCA reaction lacking PrPSc template seed, synthetic polyA RNA molecules induce hamster HaPrPC to adopt a protease-sensitive, detergent-insoluble conformation reactive against antibodies specific for PrPSc. During PMCA, labeled nucleic acids form nuclease-resistant complexes with HaPrP molecules. Strikingly, purified HaPrPC molecules subjected to PMCA selectively incorporate an approximately 1-2.5-kb subset of [32P]polyA RNA molecules from a heterogeneous mixture ranging in size from approximately 0.1 to >6 kb. Neuropathological analysis of scrapie-infected hamsters using the fluorescent dye acridine orange revealed that RNA molecules co-localize with large extracellular HaPrP aggregates. These findings suggest that polyanionic molecules such as RNA may become selectively incorporated into stable complexes with PrP molecules during the formation of native hamster prions.

          Related collections

          Author and article information

          Journal
          17940287
          3091164
          10.1074/jbc.M704447200

          Chemistry
          Amyloid,chemistry,metabolism,Animals,Catalysis,Cricetinae,Cricetulus,Female,Male,Polymers,PrPC Proteins,PrPSc Proteins,RNA,Ribonucleases,Scrapie,pathology

          Comments

          Comment on this article