76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Precision medicine is an approach that takes into account the influence of individuals' genes, environment, and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform that integrates whole-exome sequencing with a living biobank that enables high-throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an Institutional Review Board–approved clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority of patients with advanced disease, we used high-throughput drug screening to discover effective treatment strategies. Analysis of tumor-derived cells from four cases, two uterine malignancies and two colon cancers, identified effective drugs and drug combinations that were subsequently validated using 3-D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic approaches that can be assessed in clinical trials and provides personalized therapeutic options for individual patients where standard clinical options have been exhausted.

          Significance: Integration of genomic data with drug screening from personalized in vitro and in vivo cancer models guides precision cancer care and fuels next-generation research. Cancer Discov; 7(5); 462–77. ©2017 AACR.

          See related commentary by Picco and Garnett, p. 456.

          This article is highlighted in the In This Issue feature, p. 443

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

          The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available 1 . Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens 2 .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples

            Detection of somatic point substitutions is a key step in characterizing the cancer genome. Mutations in cancer are rare (0.1–100/Mb) and often occur only in a subset of the sequenced cells, either due to contamination by normal cells or due to tumor heterogeneity. Consequently, mutation calling methods need to be both specific, avoiding false positives, and sensitive to detect clonal and sub-clonal mutations. The decreased sensitivity of existing methods for low allelic fraction mutations highlights the pressing need for improved and systematically evaluated mutation detection methods. Here we present MuTect, a method based on a Bayesian classifier designed to detect somatic mutations with very low allele-fractions, requiring only a few supporting reads, followed by a set of carefully tuned filters that ensure high specificity. We also describe novel benchmarking approaches, which use real sequencing data to evaluate the sensitivity and specificity as a function of sequencing depth, base quality and allelic fraction. Compared with other methods, MuTect has higher sensitivity with similar specificity, especially for mutations with allelic fractions as low as 0.1 and below, making MuTect particularly useful for studying cancer subclones and their evolution in standard exome and genome sequencing data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutational heterogeneity in cancer and the search for new cancer genes

              Major international projects are now underway aimed at creating a comprehensive catalog of all genes responsible for the initiation and progression of cancer. These studies involve sequencing of matched tumor–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here, we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false positive findings that overshadow true driver events. Here, we show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumor-normal pairs and discover extraordinary variation in (i) mutation frequency and spectrum within cancer types, which shed light on mutational processes and disease etiology, and (ii) mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and allow true cancer genes to rise to attention.
                Bookmark

                Author and article information

                Journal
                Cancer Discovery
                American Association for Cancer Research (AACR)
                2159-8274
                2159-8290
                May 01 2017
                April 30 2017
                May 01 2017
                April 30 2017
                : 7
                : 5
                : 462-477
                Article
                10.1158/2159-8290.CD-16-1154
                5413423
                28331002
                c392473c-3da7-4925-ac99-450674a9f84c
                © 2017
                History

                Comments

                Comment on this article