17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A model to assess the efficacy of vaccines for control of liver fluke infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fasciola hepatica, common liver fluke, infects cattle and sheep causing disease and production losses costing approximately $3billion annually. Current control relies on drugs designed to kill the parasite. However, resistance is evident worldwide and widespread in some areas. Work towards a vaccine has identified several antigens of F. hepatica that show partial efficacy in terms of reducing worm burden and egg output. A critical question is what level of efficacy is required for such a vaccine to be useful? We have created the first mathematical model to assess the effectiveness of liver fluke vaccines under simulated field conditions. The model describes development of fluke within a group of animals and includes heterogeneity in host susceptibility, seasonal exposure to metacercariae and seasonal changes in temperature affecting metacercarial survival. Our analysis suggests that the potential vaccine candidates could reduce total fluke burden and egg output by up to 43% and 99%, respectively, on average under field conditions. It also suggests that for a vaccine to be effective, it must protect at least 90% of animals for the whole season. In conclusion, novel, partial, vaccines could contribute substantially towards fasciolosis control, reducing usage of anthelmintics and thus delaying the spread of anthelmintic resistance.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A ten-year review of commercial vaccine performance for control of tick infestations on cattle.

          Ticks are important ectoparasites of domestic and wild animals, and tick infestations economically impact cattle production worldwide. Control of cattle tick infestations has been primarily by application of acaricides which has resulted in selection of resistant ticks and environmental pollution. Herein we discuss data from tick vaccine application in Australia, Cuba, Mexico and other Latin American countries. Commercial tick vaccines for cattle based on the Boophilus microplus Bm86 gut antigen have proven to be a feasible tick control method that offers a cost-effective, environmentally friendly alternative to the use of acaricides. Commercial tick vaccines reduced tick infestations on cattle and the intensity of acaricide usage, as well as increasing animal production and reducing transmission of some tick-borne pathogens. Although commercialization of tick vaccines has been difficult owing to previous constraints of antigen discovery, the expense of testing vaccines in cattle, and company restructuring, the success of these vaccines over the past decade has clearly demonstrated their potential as an improved method of tick control for cattle. Development of improved vaccines in the future will be greatly enhanced by new and efficient molecular technologies for antigen discovery and the urgent need for a tick control method to reduce or replace the use of acaricides, especially in regions where extensive tick resistance has occurred.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patterns of macroparasite aggregation in wildlife host populations.

            Frequency distributions from 49 published wildlife host-macroparasite systems were analysed by maximum likelihood for goodness of fit to the negative binomial distribution. In 45 of the 49 (90%) data-sets, the negative binomial distribution provided a statistically satisfactory fit. In the other 4 data-sets the negative binomial distribution still provided a better fit than the Poisson distribution, and only 1 of the data-sets fitted the Poisson distribution. The degree of aggregation was large, with 43 of the 49 data-sets having an estimated k of less than 1. From these 49 data-sets, 22 subsets of host data were available (i.e. host data could be divided by either host sex, age, where or when hosts were sampled). In 11 of these 22 subsets there was significant variation in the degree of aggregation between host subsets of the same host-parasite system. A common k estimate was always larger than that obtained with all the host data considered together. These results indicate that lumping host data can hide important variations in aggregation between hosts and can exaggerate the true degree of aggregation. Wherever possible common k estimates should be used to estimate the degree of aggregation. In addition, significant differences in the degree of aggregation between subgroups of host data, were generally associated with significant differences in both mean parasite burdens and the prevalence of infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fasciola hepatica vaccine: We may not be there yet but we’re on the right road

              Major advances have been made in identifying potential vaccine molecules for the control of fasciolosis in livestock but we have yet to reach the level of efficacy required for commercialisation. The pathogenesis of fasciolosis is associated with liver damage that is inflicted by migrating and feeding immature flukes as well as host inflammatory immune responses to parasite-secreted molecules and tissue damage alarm signals. Immune suppression/modulation by the parasites prevents the development of protective immune responses as evidenced by the lack of immunity observed in naturally and experimentally infected animals. In our opinion, future efforts need to focus on understanding how parasites invade and penetrate the tissues of their hosts and how they potentiate and control the ensuing immune responses, particularly in the first days of infection. Emerging ‘omics’ data employed in an unbiased approach are helping us understand liver fluke biology and, in parallel with new immunological data, to identify molecules that are essential to parasite development and accessible to vaccine-induced immune responses.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                24 March 2016
                2016
                : 6
                : 23345
                Affiliations
                [1 ]Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus , Chester High Road, Neston, CH64 7TE, UK
                [2 ]Department of Infection Biology, Institute of Infection and Global Health, Liverpool Science Park IC2 , 146 Brownlow Hill, Liverpool, L3 5RF, UK
                [3 ]Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Waterhouse Building , Liverpool, L69 3GL, UK
                [4 ]Department of Mathematical Sciences, University of Liverpool, Mathematical Sciences Building , Liverpool, L69 7ZL, UK
                [5 ]NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool, L69 7BE, UK
                Author notes
                [*]

                These authors jointly supervised this work.

                Article
                srep23345
                10.1038/srep23345
                4806326
                27009747
                c311b53f-ad00-46f1-b761-85b1657ff57d
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 September 2015
                : 02 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article