75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SCYX-7158, an Orally-Active Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human African trypanosomiasis (HAT) is an important public health problem in sub-Saharan Africa, affecting hundreds of thousands of individuals. An urgent need exists for the discovery and development of new, safe, and effective drugs to treat HAT, as existing therapies suffer from poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. We have discovered and optimized a novel class of small-molecule boron-containing compounds, benzoxaboroles, to identify SCYX-7158 as an effective, safe and orally active treatment for HAT.

          Methodology/Principal Findings

          A drug discovery project employing integrated biological screening, medicinal chemistry and pharmacokinetic characterization identified SCYX-7158 as an optimized analog, as it is active in vitro against relevant strains of Trypanosoma brucei, including T. b. rhodesiense and T. b. gambiense, is efficacious in both stage 1 and stage 2 murine HAT models and has physicochemical and in vitro absorption, distribution, metabolism, elimination and toxicology (ADMET) properties consistent with the compound being orally available, metabolically stable and CNS permeable. In a murine stage 2 study, SCYX-7158 is effective orally at doses as low as 12.5 mg/kg (QD×7 days). In vivo pharmacokinetic characterization of SCYX-7158 demonstrates that the compound is highly bioavailable in rodents and non-human primates, has low intravenous plasma clearance and has a 24-h elimination half-life and a volume of distribution that indicate good tissue distribution. Most importantly, in rodents brain exposure of SCYX-7158 is high, with C max >10 µg/mL and AUC 0–24 hr >100 µg*h/mL following a 25 mg/kg oral dose. Furthermore, SCYX-7158 readily distributes into cerebrospinal fluid to achieve therapeutically relevant concentrations in this compartment.

          Conclusions/Significance

          The biological and pharmacokinetic properties of SCYX-7158 suggest that this compound will be efficacious and safe to treat stage 2 HAT. SCYX-7158 has been selected to enter preclinical studies, with expected progression to phase 1 clinical trials in 2011.

          Author Summary

          Human African trypanosomiasis (HAT) is caused by infection with the parasite Trypanosoma brucei and is an important public health problem in sub-Saharan Africa. New, safe, and effective drugs are urgently needed to treat HAT, particularly stage 2 disease where the parasite infects the brain. Existing therapies for HAT have poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. Through an integrated drug discovery project, we have discovered and optimized a novel class of boron-containing small molecules, benzoxaboroles, to deliver SCYX-7158, an orally active preclinical drug candidate. SCYX-7158 cured mice infected with T. brucei, both in the blood and in the brain. Extensive pharmacokinetic characterization of SCYX-7158 in rodents and non-human primates supports the potential of this drug candidate for progression to IND-enabling studies in advance of clinical trials for stage 2 HAT.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers.

          Blood stream forms (BSF) of Trypanosoma brucei brucei GUT at 3.1 were propagated in vitro in the absence of feeder layer cells at 37 C, using a modified Iscove's medium (HMI-18). The medium was supplemented with 0.05 mM bathocuproine sulfonate, 1.5 mM L-cysteine, 1 mM hypoxanthine, 0.2 mM 2-mercaptoethanol, 1 mM sodium pyruvate. 0.16 mM thymidine, and 20% (v/v) Serum Plus (SP) (Hazleton Biologics, Lenexa, Kansas). The latter contained a low level of serum proteins (13 micrograms/ml). Each primary culture was initiated by placing 3.5-4 x 10(6) BSFs isolated from infected mice in a flask containing 5 ml of the medium (HMI-9) supplemented with 10% fetal bovine serum (FBS) and 10% SP. The cultures were maintained by replacing the medium every 24 hr for 5-7 days. During this period, many BSFs died. However, from day 4 onward, long slender BSFs increased in number. On days 5-7, trypanosome suspensions were pooled and cell debris was removed by means of diethylaminoethyl cellulose (DE52) column chromatography. Blood stream forms then were collected by centrifugation, resuspended in fresh medium at 7-9 x 10(5)/ml, and transferred to new flasks. Subcultures were maintained by readjusting the BSF density to 7-9 x 10(5)/ml every 24 hr. Concentrations of FBS were reduced gradually at 5-7-day intervals by alternating the amounts of FBS and SP in HMI-9 with 5% FBS and 15% SP, with 2% FBS and 18% SP, and finally with 20% SP (HMI-18). By this method, 2-3 x 10(6) VSFs/ml were obtained consistently every 24 hr. for more than 80 days.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial.

            Human African trypanosomiasis (HAT; sleeping sickness) caused by Trypanosoma brucei gambiense is a fatal disease. Current treatment options for patients with second-stage disease are toxic, ineffective, or impractical. We assessed the efficacy and safety of nifurtimox-eflornithine combination therapy (NECT) for second-stage disease compared with the standard eflornithine regimen. A multicentre, randomised, open-label, active control, phase III, non-inferiority trial was done at four HAT treatment centres in the Republic of the Congo and the Democratic Republic of the Congo. Patients aged 15 years or older with confirmed second-stage T b gambiense infection were randomly assigned by computer-generated randomisation sequence to receive intravenous eflornithine (400 mg/kg per day, every 6 h; n=144) for 14 days or intravenous eflornithine (400 mg/kg per day, every 12 h) for 7 days with oral nifurtimox (15 mg/kg per day, every 8 h) for 10 days (NECT; n=143). The primary endpoint was cure (defined as absence of trypanosomes in body fluids and a leucocyte count
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro.

              Alamar Blue, an indicator for metabolic cell function, was evaluated as a fluorescent and as a colorimetric dye in drug sensitivity assays for human pathogenic African trypanosomes, Trypanosoma brucei rhodesiense and T.b. gambiense. The experimental conditions were adjusted to find those where the relationship between trypanosome number and Alamar Blue signal was linear over the widest possible range. Fluorescent signals correlated to trypanosome numbers from 10(4) trypanosomes/ml (T.b. rhodesiense) and 10(5) trypanosomes/ml (T.b. gambiense) up to 2-3 x 10(6) trypanosomes/ml when trypanosomes were incubated for 2 h with 10% Alamar Blue. Trypanocidal activity of common drugs (melarsoprol, DFMO, suramin, pentamidine and diminazene aceturate) was determined employing this assay. The IC50 values obtained were comparable to those obtained with another fluorochrome, BCECF-AM. The Alamar Blue assay can be applied for drug screening, since it is simple, reproducible and economical. The assay can also be used in field sites with less equipped laboratories, because in addition to fluorometric endpoint determination, a colorimetric reading is possible.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                June 2011
                28 June 2011
                : 5
                : 6
                : e1151
                Affiliations
                [1 ]SCYNEXIS, Inc., Research Triangle Park, North Carolina, United States of America
                [2 ]Haskins Laboratory, Pace University, New York, New York, United States of America
                [3 ]Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
                [4 ]Swiss Tropical and Public Health Institute, Basel, Switzerland
                [5 ]Drugs for Neglected Diseases initiative, , Geneva, Switzerland
                Swiss Tropical and Public Health Institute, Switzerland
                Author notes

                Conceived and designed the experiments: RTJ BN SAW CJB NY RB RD. Performed the experiments: BN MDO DC JMS MXJ RAN TSB LTM CR EG JO RP RR BB MK. Analyzed the data: RTJ BN SAW MDO DC CJB NY JJP YF CD TA YKZ RB IS RD. Wrote the paper: RTJ BN SAW.

                Article
                PNTD-D-10-00094
                10.1371/journal.pntd.0001151
                3125149
                21738803
                c2a9412d-80d3-490d-bead-e737e34281c0
                Jacobs et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 October 2010
                : 2 March 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Microbiology
                Parasitology
                Parasite Physiology
                Chemistry
                Chemical Biology
                Medicinal Chemistry

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article