7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Not All Fibers Are Born Equal; Variable Response to Dietary Fiber Subtypes in IBD

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diet provides a safe and attractive alternative to available treatment options in a variety of diseases; however, research has only just begun to elucidate the role of diet in chronic diseases, such as the inflammatory bowel diseases (IBD). The chronic and highly debilitating IBDs, Crohn disease and ulcerative colitis, are hallmarked by intestinal inflammation, immune dysregulation, and dysbiosis; and evidence supports a role for genetics, microbiota, and the environment, including diet, in disease pathogenesis. This is true especially in children with IBD, where diet-based treatments have shown excellent results. One interesting group of dietary factors that readily links microbiota to gut health is dietary fibers. Fibers are not digested by human cells, but rather fermented by the gut microbes within the bowel. Evidence has been mounting over the last decade in support of the importance of dietary fibers in the maintenance of gut health and in IBD; however, more recent studies highlight the complexity of this interaction and importance of understanding the role of each individual dietary fiber subtype, especially during disease. There are roughly ten subtypes of dietary fibers described to date, categorized as soluble or insoluble, with varying chemical structures, and large differences in their fermentation profiles. Many studies to date have described the benefits of the byproducts of fermentation in healthy individuals and the potential health benefits in select disease models. However, there remains a void in our understanding of how each of these individual fibers affect human health in dysbiotic settings where appropriate fermentation may not be achieved. This review highlights the possibilities for better defining the role of individual dietary fibers for use in regulating inflammation in IBD.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structure, Function and Diversity of the Healthy Human Microbiome

          Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.

            Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The carbohydrate-active enzymes database (CAZy) in 2013

              The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                15 January 2021
                2020
                : 8
                : 620189
                Affiliations
                [1] 1Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta , Edmonton, AB, Canada
                [2] 2Department of Pediatrics, University of Alberta , Edmonton, AB, Canada
                [3] 3Department of Medicine, University of Alberta , Edmonton, AB, Canada
                [4] 4Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, ON, Canada
                [5] 5Department of Physiology, University of Alberta , Edmonton, AB, Canada
                Author notes

                Edited by: André Hörning, University Hospital Erlangen, Germany

                Reviewed by: Andrew T Gewirtz, Georgia State University, United States; Corentin Babakissa, Université de Sherbrooke, Canada

                *Correspondence: Heather Armstrong harmstro@ 123456ualberta.ca

                This article was submitted to Pediatric Gastroenterology, Hepatology and Nutrition, a section of the journal Frontiers in Pediatrics

                Article
                10.3389/fped.2020.620189
                7844368
                33520902
                c1f851ec-dc14-47c2-bb4a-b77bce9681bb
                Copyright © 2021 Armstrong, Mander, Zhang, Armstrong and Wine.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 October 2020
                : 10 December 2020
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 219, Pages: 15, Words: 12371
                Funding
                Funded by: Canadian Institutes of Health Research 10.13039/501100000024
                Funded by: Garfield Weston Foundation 10.13039/100013999
                Categories
                Pediatrics
                Review

                ulcerative colitis,crohn disease,ibd–inflammatory bowel diseases,pediatric ibd,dietary fiber

                Comments

                Comment on this article