356
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The carbohydrate-active enzymes database (CAZy) in 2013

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics

          The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: http://www.cazy.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes

            Background Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Results Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). Conclusions The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              dbCAN: a web resource for automated carbohydrate-active enzyme annotation

              Carbohydrate-active enzymes (CAZymes) are very important to the biotech industry, particularly the emerging biofuel industry because CAZymes are responsible for the synthesis, degradation and modification of all the carbohydrates on Earth. We have developed a web resource, dbCAN (http://csbl.bmb.uga.edu/dbCAN/annotate.php), to provide a capability for automated CAZyme signature domain-based annotation for any given protein data set (e.g. proteins from a newly sequenced genome) submitted to our server. To accomplish this, we have explicitly defined a signature domain for every CAZyme family, derived based on the CDD (conserved domain database) search and literature curation. We have also constructed a hidden Markov model to represent the signature domain of each CAZyme family. These CAZyme family-specific HMMs are our key contribution and the foundation for the automated CAZyme annotation.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2014
                21 November 2013
                21 November 2013
                : 42
                : D1 , Database issue
                : D490-D495
                Affiliations
                1Centre National de la Recherche Scientifique, CNRS UMR 7257, 13288 Marseille, France and 2Aix-Marseille Université, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
                Author notes
                *To whom correspondence should be addressed. Tel: +33 491 82 55 87; Fax: +33 491 26 67 20; Email: Bernard.Henrissat@ 123456afmb.univ-mrs.fr

                Present address: Elodie Drula, Institut National de la Recherche Agronomique, UMR1163, Aix-Marseille Université, 163 avenue de Luminy, 13288 Marseille, France.

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

                Article
                gkt1178
                10.1093/nar/gkt1178
                3965031
                24270786
                dbd6875f-d023-4683-aa38-d3ed55ef9de2
                © The Author(s) 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 September 2013
                : 30 October 2013
                : 31 October 2013
                Page count
                Pages: 6
                Categories
                III. Metabolic and signalling pathways, enzymes
                Custom metadata
                1 January 2014

                Genetics
                Genetics

                Comments

                Comment on this article