11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial Resistance in Pathogens Isolated from Blood Cultures: A Two-Year Multicenter Hospital Surveillance Study in Italy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Antimicrobial resistance (AMR) is one of the most concerning issues in medicine today. The objectives of this study were to investigate the AMR distribution of the blood-borne pathogens isolated over a two-year period in an Italian region. Methods: A retrospective electronic record review of laboratory-confirmed bloodstream infections (BSIs) was done, and data from three major diagnostic laboratories were used. Twelve invasive clinically important bacteria species were included in the sample. Results: During the study period, 1228 positive BSIs were collected. The most common pathogens were Coagulase-negative Staphylococcus (CoNS) (29.7%), Staphylococcus aureus (19.1%) and Escherichia coli (15.9%). With regard to the AMR pattern, 31.7% of CoNS and 28.1% of Staphylococcus aureus were oxacillin-resistant, and almost half of the Enterococci showed resistance to high-level gentamicin. Among Gram-negative species, 11.7% of Escherichia coli and 39.5% of Klebsiella pneumoniae were carbapenem-resistant. Among the non-fermentative Gram-negative bacteria, the most frequently combined AMR pattern was aminoglycosides and fluoroquinolones (48.4% in A. baumannii and 14.6% in P. aeruginosa). Conclusion: The results display an alarming prevalence of AMR among hospital isolated pathogens, consistently higher than the European average. Information from surveillance systems to better characterize the trend in the incidence of AMR at local and national levels is needed.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

          Summary Background Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs). Methods We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature. Findings From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece. Interpretation Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases. Funding European Centre for Disease Prevention and Control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study.

            Nosocomial bloodstream infections (BSIs) are important causes of morbidity and mortality in the United States. Data from a nationwide, concurrent surveillance study (Surveillance and Control of Pathogens of Epidemiological Importance [SCOPE]) were used to examine the secular trends in the epidemiology and microbiology of nosocomial BSIs. Our study detected 24,179 cases of nosocomial BSI in 49 US hospitals over a 7-year period from March 1995 through September 2002 (60 cases per 10,000 hospital admissions). Eighty-seven percent of BSIs were monomicrobial. Gram-positive organisms caused 65% of these BSIs, gram-negative organisms caused 25%, and fungi caused 9.5%. The crude mortality rate was 27%. The most-common organisms causing BSIs were coagulase-negative staphylococci (CoNS) (31% of isolates), Staphylococcus aureus (20%), enterococci (9%), and Candida species (9%). The mean interval between admission and infection was 13 days for infection with Escherichia coli, 16 days for S. aureus, 22 days for Candida species and Klebsiella species, 23 days for enterococci, and 26 days for Acinetobacter species. CoNS, Pseudomonas species, Enterobacter species, Serratia species, and Acinetobacter species were more likely to cause infections in patients in intensive care units (P<.001). In neutropenic patients, infections with Candida species, enterococci, and viridans group streptococci were significantly more common. The proportion of S. aureus isolates with methicillin resistance increased from 22% in 1995 to 57% in 2001 (P<.001, trend analysis). Vancomycin resistance was seen in 2% of Enterococcus faecalis isolates and in 60% of Enterococcus faecium isolates. In this study, one of the largest multicenter studies performed to date, we found that the proportion of nosocomial BSIs due to antibiotic-resistant organisms is increasing in US hospitals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nosocomial bloodstream infections in United States hospitals: a three-year analysis.

              Nosocomial bloodstream infections are important causes of morbidity and mortality. In this study, concurrent surveillance for nosocomial bloodstream infections at 49 hospitals over a 3-year period detected >10,000 infections. Gram-positive organisms accounted for 64% of cases, gram-negative organisms accounted for 27%, and 8% were caused by fungi. The most common organisms were coagulase-negative staphylococci (32%), Staphylococcus aureus (16%), and enterococci (11%). Enterobacter, Serratia, coagulase-negative staphylococci, and Candida were more likely to cause infections in patients in critical care units. In patients with neutropenia, viridans streptococci were significantly more common. Coagulase-negative staphylococci were the most common pathogens on all clinical services except obstetrics, where Escherichia coli was most common. Methicillin resistance was detected in 29% of S. aureus isolates and 80% of coagulase-negative staphylococci. Vancomycin resistance in enterococci was species-dependent--3% of Enterococcus faecalis strains and 50% of Enterococcus faecium isolates displayed resistance. These data may allow clinicians to better target empirical therapy for hospital-acquired cases of bacteremia.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                24 December 2020
                January 2021
                : 10
                : 1
                : 10
                Affiliations
                Department of Health Sciences, School of Medicine, University of Catanzaro “Magna Græcia”, Viale Europa, Germaneto, 88100 Catanzaro, Italy; francesca.licata@ 123456studenti.unicz.it (F.L.); quirino@ 123456unicz.it (A.Q.); davide.pepe@ 123456studenti.unicz.it (D.P.); mmatera@ 123456unicz.it (G.M.)
                Author notes
                [* ]Correspondence: a.bianco@ 123456unicz.it
                [†]

                Membership of the Collaborative Group is provided in the Acknowledgments.

                Author information
                https://orcid.org/0000-0003-3704-6822
                https://orcid.org/0000-0002-7837-9853
                https://orcid.org/0000-0003-4674-0306
                Article
                antibiotics-10-00010
                10.3390/antibiotics10010010
                7824585
                33374232
                c197ee53-d820-44f9-bb46-22d79e8d1d6c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 December 2020
                : 22 December 2020
                Categories
                Article

                antimicrobial resistance,hospital,bloodstream infection,surveillance,multi-drug resistance,italy

                Comments

                Comment on this article