12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of Comorbidity Burden With Abnormal Cardiac Mechanics: Findings From the HyperGEN Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Comorbidities are common in heart failure (HF), and the number of comorbidities has been associated with poor outcomes in HF patients. However, little is known about the effect of multiple comorbidities on cardiac mechanics, which could impact the pathogenesis of HF. We sought to determine the relationship between comorbidity burden and adverse cardiac mechanics.

          Methods and Results

          We performed speckle‐tracking analysis on echocardiograms from the HyperGEN study (n=2150). Global longitudinal, circumferential, and radial strain, and early diastolic (e') tissue velocities were measured. We evaluated the association between comorbidity number and cardiac mechanics using linear mixed effects models to account for relatedness among subjects. The mean age was 51±14 years, 58% were female, and 47% were African American. Dyslipidemia and hypertension were the most common comorbidities (61% and 58%, respectively). After adjusting for left ventricular (LV) mass index, ejection fraction, and several potential confounders, the number of comorbidities remained associated with all indices of cardiac mechanics except global circumferential strain (eg, β=−0.32 [95% CI −0.44, −0.20] per 1‐unit increase in number of comorbidities for global longitudinal strain; β=−0.16 [95% CI −0.20, −0.11] for e' velocity; P≤0.0001 for both comparisons). Results were similar after excluding participants with abnormal LV geometry ( P<0.05 for all comparisons).

          Conclusions

          Higher comorbidity burden is associated with worse cardiac mechanics, even in the presence of normal LV geometry. The deleterious effect of multiple comorbidities on cardiac mechanics may explain both the high comorbidity burden and adverse outcomes in patients who ultimately develop HF.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          Left Ventricular Remodeling After Myocardial Infarction: Pathophysiology and Therapy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography.

            Echocardiographic imaging is ideally suited for the evaluation of cardiac mechanics because of its intrinsically dynamic nature. Because for decades, echocardiography has been the only imaging modality that allows dynamic imaging of the heart, it is only natural that new, increasingly automated techniques for sophisticated analysis of cardiac mechanics have been driven by researchers and manufacturers of ultrasound imaging equipment.Several such technique shave emerged over the past decades to address the issue of reader's experience and inter measurement variability in interpretation.Some were widely embraced by echocardiographers around the world and became part of the clinical routine,whereas others remained limited to research and exploration of new clinical applications.Two such techniques have dominated the research arena of echocardiography: (1) Doppler based tissue velocity measurements,frequently referred to as tissue Doppler or myocardial Doppler, and (2) speckle tracking on the basis of displacement measurements.Both types of measurements lend themselves to the derivation of multiple parameters of myocardial function. The goal of this document is to focus on the currently available techniques that allow quantitative assessment of myocardial function via image-based analysis of local myocardial dynamics, including Doppler tissue imaging and speckle-tracking echocardiography, as well as integrated backscatter analysis. This document describes the current and potential clinical applications of these techniques and their strengths and weaknesses,briefly surveys a selection of the relevant published literature while highlighting normal and abnormal findings in the context of different cardiovascular pathologies, and summarizes the unresolved issues, future research priorities, and recommended indications for clinical use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Racial differences in incident heart failure among young adults.

              The antecedents and epidemiology of heart failure in young adults are poorly understood. We prospectively assessed the incidence of heart failure over a 20-year period among 5115 blacks and whites of both sexes who were 18 to 30 years of age at baseline. Using Cox models, we examined predictors of hospitalization or death from heart failure. Over the course of 20 years, heart failure developed in 27 participants (mean [+/-SD] age at onset, 39+/-6 years), all but 1 of whom were black. The cumulative incidence of heart failure before the age of 50 years was 1.1% (95% confidence interval [CI], 0.6 to 1.7) in black women, 0.9% (95% CI, 0.5 to 1.4) in black men, 0.08% (95% CI, 0.0 to 0.5) in white women, and 0% (95% CI, 0 to 0.4) in white men (P=0.001 for the comparison of black participants and white participants). Among blacks, independent predictors at 18 to 30 years of age of heart failure occurring 15 years, on average, later included higher diastolic blood pressure (hazard ratio per 10.0 mm Hg, 2.1; 95% CI, 1.4 to 3.1), higher body-mass index (the weight in kilograms divided by the square of the height in meters) (hazard ratio per 5.7 units, 1.4; 95% CI, 1.0 to 1.9), lower high-density lipoprotein cholesterol (hazard ratio per 13.3 mg per deciliter [0.34 mmol per liter], 0.6; 95% CI, 0.4 to 1.0), and kidney disease (hazard ratio, 19.8; 95% CI, 4.5 to 87.2). Three quarters of those in whom heart failure subsequently developed had hypertension by the time they were 40 years of age. Depressed systolic function, as assessed on a study echocardiogram when the participants were 23 to 35 years of age, was independently associated with the development of heart failure 10 years, on average, later (hazard ratio for abnormal systolic function, 36.9; 95% CI, 6.9 to 198.3; hazard ratio for borderline systolic function, 3.5; 95% CI, 1.2 to 10.2). Myocardial infarction, drug use, and alcohol use were not associated with the risk of heart failure. Incident heart failure before 50 years of age is substantially more common among blacks than among whites. Hypertension, obesity, and systolic dysfunction that are present before a person is 35 years of age are important antecedents that may be targets for the prevention of heart failure. (ClinicalTrials.gov number, NCT00005130.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                June 2014
                27 June 2014
                : 3
                : 3
                : e000631
                Affiliations
                [1 ]Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.S., F.G.A., E.E.M., L.B., S.J.S.)
                [2 ]Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (K.Y.A.K., J.P., L.R.T.)
                [3 ]Department of Epidemiology, School of Public Health, University of Alabama Birmingham,
                [4 ]Department of Biostatistics, Washington University School of Medicine, St. Louis, MO (C.G.)
                [5 ]University of Utah School of Medicine, Salt Lake City, UT (S.C.H.)
                Author notes
                Correspondence to: Sanjiv J. Shah, MD, FAHA, Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N. St. Clair St., Suite 600, Chicago, IL 60611. E‐mail: sanjiv.shah@ 123456northwestern.edu
                Article
                jah3496
                10.1161/JAHA.113.000631
                4309045
                24780206
                c1753a3c-b26a-432b-8563-9509a17c466b
                © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 27 October 2013
                : 27 February 2014
                Categories
                Original Research
                Heart Failure

                Cardiovascular Medicine
                cardiac mechanics,comorbidities,echocardiography,risk factors,strain
                Cardiovascular Medicine
                cardiac mechanics, comorbidities, echocardiography, risk factors, strain

                Comments

                Comment on this article