25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of atypical antipsychotics in the elderly: a clinical review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of atypical antipsychotic drugs in the elderly has become wider and wider in recent years; in fact, these agents have novel receptor binding profiles, good efficacy with regard to negative symptoms, and reduced extrapyramidal symptoms. However, in recent years, the use of both conventional and atypical antipsychotics has been widely debated for concerns about their safety in elderly patients affected with dementia and the possible risks for stroke and sudden death. A MEDLINE search was made using the words elderly, atypical antipsychotics, use, schizophrenia, psychosis, mood disorders, dementia, behavioral disorders, and adverse events. Some personal studies were also considered. This paper reports the receptor binding profiles and the main mechanism of action of these drugs, together with their main use in psychiatry and the possible adverse events in elderly people.

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Atypical antipsychotic drugs and the risk of sudden cardiac death.

          Users of typical antipsychotic drugs have an increased risk of serious ventricular arrhythmias and sudden cardiac death. However, less is known regarding the cardiac safety of the atypical antipsychotic drugs, which have largely replaced the older agents in clinical practice. We calculated the adjusted incidence of sudden cardiac death among current users of antipsychotic drugs in a retrospective cohort study of Medicaid enrollees in Tennessee. The primary analysis included 44,218 and 46,089 baseline users of single typical and atypical drugs, respectively, and 186,600 matched nonusers of antipsychotic drugs. To assess residual confounding related to factors associated with the use of antipsychotic drugs, we performed a secondary analysis of users of antipsychotic drugs who had no baseline diagnosis of schizophrenia or related psychoses and with whom nonusers were matched according to propensity score (i.e., the predicted probability that they would be users of antipsychotic drugs). Current users of typical and of atypical antipsychotic drugs had higher rates of sudden cardiac death than did nonusers of antipsychotic drugs, with adjusted incidence-rate ratios of 1.99 (95% confidence interval [CI], 1.68 to 2.34) and 2.26 (95% CI, 1.88 to 2.72), respectively. The incidence-rate ratio for users of atypical antipsychotic drugs as compared with users of typical antipsychotic drugs was 1.14 (95% CI, 0.93 to 1.39). Former users of antipsychotic drugs had no significantly increased risk (incidence-rate ratio, 1.13; 95% CI, 0.98 to 1.30). For both classes of drugs, the risk for current users increased significantly with an increasing dose. Among users of typical antipsychotic drugs, the incidence-rate ratios increased from 1.31 (95% CI, 0.97 to 1.77) for those taking low doses to 2.42 (95% CI, 1.91 to 3.06) for those taking high doses (P<0.001). Among users of atypical agents, the incidence-rate ratios increased from 1.59 (95% CI, 1 .03 to 2.46) for those taking low doses to 2.86 (95% CI, 2.25 to 3.65) for those taking high doses (P=0.01). The findings were similar in the cohort that was matched for propensity score. Current users of typical and of atypical antipsychotic drugs had a similar, dose-related increased risk of sudden cardiac death. 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atypical antipsychotics: mechanism of action.

            Although the principal brain target that all antipsychotic drugs attach to is the dopamine D2 receptor, traditional or typical antipsychotics, by attaching to it, induce extrapyramidal signs and symptoms (EPS). They also, by binding to the D2 receptor, elevate serum prolactin. Atypical antipsychotics given in dosages within the clinically effective range do not bring about these adverse clinical effects. To understand how these drugs work, it is important to examine the atypical antipsychotics' mechanism of action and how it differs from that of the more typical drugs. This review analyzes the affinities, the occupancies, and the dissociation time-course of various antipsychotics at dopamine D2 receptors and at serotonin (5-HT) receptors, both in the test tube and in live patients. Of the 31 antipsychotics examined, the older traditional antipsychotics such as trifluperazine, pimozide, chlorpromazine, fluphenazine, haloperidol, and flupenthixol bind more tightly than dopamine itself to the dopamine D2 receptor, with dissociation constants that are lower than that for dopamine. The newer, atypical antipsychotics such as quetiapine, remoxipride, clozapine, olanzapine, sertindole, ziprasidone, and amisulpride all bind more loosely than dopamine to the dopamine D2 receptor and have dissociation constants higher than that for dopamine. These tight and loose binding data agree with the rates of antipsychotic dissociation from the human-cloned D2 receptor. For instance, radioactive haloperidol, chlorpromazine, and raclopride all dissociate very slowly over a 30-minute time span, while radioactive quetiapine, clozapine, remoxipride, and amisulpride dissociate rapidly, in less than 60 seconds. These data also match clinical brain-imaging findings that show haloperidol remaining constantly bound to D2 in humans undergoing 2 positron emission tomography (PET) scans 24 hours apart. Conversely, the occupation of D2 by clozapine or quetiapine has mostly disappeared after 24 hours. Atypicals clinically help patients by transiently occupying D2 receptors and then rapidly dissociating to allow normal dopamine neurotransmission. This keeps prolactin levels normal, spares cognition, and obviates EPS. One theory of atypicality is that the newer drugs block 5-HT2A receptors at the same time as they block dopamine receptors and that, somehow, this serotonin-dopamine balance confers atypicality. This, however, is not borne out by the results. While 5-HT2A receptors are readily blocked at low dosages of most atypical antipsychotic drugs (with the important exceptions of remoxipride and amisulpride, neither of which is available for use in Canada) the dosages at which this happens are below those needed to alleviate psychosis. In fact, the antipsychotic threshold occupancy of D2 for antipsychotic action remains at about 65% for both typical and atypical antipsychotic drugs, regardless of whether 5-HT2A receptors are blocked or not. At the same time, the antipsychotic threshold occupancy of D2 for eliciting EPS remains at about 80% for both typical and atypical antipsychotics, regardless of the occupancy of 5-HT2A receptors. The "fast-off-D2" theory, on the other hand, predicts which antipsychotic compounds will or will not produce EPS and hyperprolactinemia and which compounds present a relatively low risk for tardive dyskinesia. This theory also explains why L-dopa psychosis responds to low atypical antipsychotic dosages, and it suggests various individualized treatment strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review.

              Increasing numbers of reports concerning diabetes, ketoacidosis, hyperglycaemia and lipid dysregulation in patients treated with second-generation (or atypical) antipsychotics have raised concerns about a possible association between these metabolic effects and treatment with these medications. This comprehensive literature review considers the evidence for and against an association between glucose or lipid dysregulation and eight separate second-generation antipsychotics currently available in the US and/or Europe, specifically clozapine, olanzapine, risperidone, quetiapine, zotepine, amisulpride, ziprasidone and aripiprazole. This review also includes an assessment of the potential contributory role of treatment-induced weight gain in conferring risk for hyperglycaemia and dyslipidaemia during treatment with different antipsychotic medications. Substantial evidence from a variety of human populations, including some recent confirmatory evidence in treated psychiatric patients, indicates that increased adiposity is associated with a variety of adverse physiological effects, including decreases in insulin sensitivity and changes in plasma glucose and lipid levels. Comparison of mean weight changes and relative percentages of patients experiencing specific levels of weight increase from controlled, randomised clinical trials indicates that weight gain liability varies significantly across the different second generation antipsychotic agents. Clozapine and olanzapine treatment are associated with the greatest risk of clinically significant weight gain, with other agents producing relatively lower levels of risk. Risperidone, quetiapine, amisulpride and zotepine generally show low to moderate levels of mean weight gain and a modest risk of clinically significant increases in weight. Ziprasidone and aripiprazole treatment are generally associated with minimal mean weight gain and the lowest risk of more significant increases. Published studies including uncontrolled observations, large retrospective database analyses and controlled experimental studies, including randomised clinical trials, indicate that the different second-generation antipsychotics are associated with differing effects on glucose and lipid metabolism. These studies offer generally consistent evidence that clozapine and olanzapine treatment are associated with an increased risk of diabetes mellitus and dyslipidaemia. Inconsistent results, and a generally smaller effect in studies where an effect is reported, suggest limited if any increased risk for treatment-induced diabetes mellitus and dyslipidaemia during risperidone treatment, despite a comparable volume of published data. A similarly smaller and inconsistent signal suggests limited if any increased risk of diabetes or dyslipidaemia during quetiapine treatment, but this is based on less published data than is available for risperidone. The absence of retrospective database studies, and little or no relevant published data from clinical trials, makes it difficult to draw conclusions concerning risk for zotepine or amisulpride, although amisulpride appears to have less risk of treatment-emergent dyslipidaemia in comparison to olanzapine. With increasing data from clinical trials but little or no currently published data from large retrospective database analyses, there is no evidence at this time to suggest that ziprasidone and aripiprazole treatment are associated with an increase in risk for diabetes, dyslipidaemia or other adverse effects on glucose or lipid metabolism. In general, the rank order of risk observed for the second-generation antipsychotic medications suggests that the differing weight gain liability of atypical agents contributes to the differing relative risk of insulin resistance, dyslipidaemia and hyperglycaemia. This would be consistent with effects observed in nonpsychiatric samples, where risk for adverse metabolic changes tends to increase with increasing adiposity. From this perspective, a possible increase in risk would be predicted to occur in association with any treatment that produces increases in weight and adiposity. However, case reports tentatively suggest that substantial weight gain or obesity may not be a factor in up to one-quarter of cases of new-onset diabetes that occur during treatment. Pending further testing from preclinical and clinical studies, limited controlled studies support the hypothesis that clozapine and olanzapine may have a direct effect on glucose regulation independent of adiposity. The results of studies in this area are relevant to primary and secondary prevention efforts that aim to address the multiple factors that contribute to increased prevalence of type 2 diabetes mellitus and cardiovascular disease in populations that are often treated with second-generation antipsychotic medications.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                Clinical Interventions in Aging
                Clinical Interventions in Aging
                Dove Medical Press
                1176-9092
                1178-1998
                2014
                16 August 2014
                : 9
                : 1363-1373
                Affiliations
                [1 ]Elderly Health Care, Azienda Sanitaria Provinciale Catanzaro, Catanzaro, Italy
                [2 ]Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
                Author notes
                Correspondence: Pasquale De Fazio, Department of Health Sciences, University “Magna Græcia”, Campus Universitario Salvatore Venuta, Viale Europa, 88100 Catanzaro, Italy, Tel +39 961 712 393, Fax +39 961 712 393, Email defazio@ 123456unicz.it
                Article
                cia-9-1363
                10.2147/CIA.S63942
                4144926
                25170260
                c12c9d2d-94fa-4d11-9519-ff036684caf9
                © 2014 Gareri et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Health & Social care
                atypical antipsychotics,dementia,elderly,psychosis,mood disorders,side effects
                Health & Social care
                atypical antipsychotics, dementia, elderly, psychosis, mood disorders, side effects

                Comments

                Comment on this article