0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      HIV-1 Infection of Primary CD4+ T Cells Regulates the Expression of Specific Human Endogenous Retrovirus HERV-K (HML-2) Elements

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4 + T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses—6q25.1, 8q24.3, and 19q13.42—are upregulated on average between 3- and 5-fold in HIV-1-infected CD4 + T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4 + T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.

          IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that allow us to obtain detailed and accurate HERV-K HML-2 expression profiles. We applied this approach to study HERV-K expression in the presence or absence of productive HIV-1 infection of primary human CD4 + T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results presented here provide a blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          A quantitative assay for HIV DNA integration in vivo.

          Early steps of infection by HIV-1 involve entry of the viral core into cells, reverse transcription to form the linear viral DNA, and integration of that DNA into a chromosome of the host. The unintegrated DNA can also follow non-productive pathways, in which it is circularized by recombination between DNA long-terminal repeats (LTRs), circularized by ligation of the DNA ends or degraded. Here we report quantitative methods that monitor formation of reverse transcription products, two-LTR circles and integrated proviruses. The integration assay employs a novel quantitative form of Alu-PCR that should be generally applicable to studies of integrating viruses and gene transfer vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIV-associated chronic immune activation.

            Systemic chronic immune activation is considered today as the driving force of CD4(+) T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by anti-retroviral therapy, with the extent of this residual immune activation being associated with CD4(+) T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4(+) T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation characteristic of human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to 'show AIDS the door', and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells.

              To avoid detection by CTL, HIV encodes mechanisms for removal of class I MHC proteins from the surface of infected cells. However, class I downregulation potentially exposes the virus-infected cell to attack by NK cells. Human lymphoid cells are protected from NK cell cytotoxicity primarily by HLA-C and HLA-E. We present evidence that HIV-1 selectively downregulates HLA-A and HLA-B but does not significantly affect HLA-C or HLA-E. We then identify the residues in HLA-C and HLA-E that protect them from HIV down-regulation. This selective downregulation allows HIV-infected cells to avoid NK cell-mediated lysis and may represent for HIV a balance between escape from CTL and maintenance of protection from NK cells. These results suggest that subpopulations of CTL and NK cells may be uniquely suited for combating HIV.
                Bookmark

                Author and article information

                Journal
                Journal of Virology
                J Virol
                American Society for Microbiology
                0022-538X
                1098-5514
                January 01 2018
                December 14 2017
                October 18 2017
                : 92
                : 1
                Affiliations
                [1 ]The Francis Crick Institute, London, United Kingdom
                [2 ]Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
                [3 ]Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
                [4 ]Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
                Article
                10.1128/JVI.01507-17
                5730760
                29046457
                c0f889d4-68b9-4cda-91f7-b8bd67b7c35d
                © 2017
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content927

                Cited by14

                Most referenced authors1,821