2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methods for enzyme library creation: Which one will you choose? : A guide for novices and experts to introduce genetic diversity

      1 , 2 , 1 , 2 , 3 , 3 , 4
      BioEssays
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          Enzymatic assembly of DNA molecules up to several hundred kilobases.

          We describe an isothermal, single-reaction method for assembling multiple overlapping DNA molecules by the concerted action of a 5' exonuclease, a DNA polymerase and a DNA ligase. First we recessed DNA fragments, yielding single-stranded DNA overhangs that specifically annealed, and then covalently joined them. This assembly method can be used to seamlessly construct synthetic and natural genes, genetic pathways and entire genomes, and could be a useful molecular engineering tool.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Site-directed mutagenesis by overlap extension using the polymerase chain reaction

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes

              We have developed a protocol to assemble in one step and one tube at least nine separate DNA fragments together into an acceptor vector, with 90% of recombinant clones obtained containing the desired construct. This protocol is based on the use of type IIs restriction enzymes and is performed by simply subjecting a mix of 10 undigested input plasmids (nine insert plasmids and the acceptor vector) to a restriction-ligation and transforming the resulting mix in competent cells. The efficiency of this protocol allows generating libraries of recombinant genes by combining in one reaction several fragment sets prepared from different parental templates. As an example, we have applied this strategy for shuffling of trypsinogen from three parental templates (bovine cationic trypsinogen, bovine anionic trypsinogen and human cationic trypsinogen) each divided in 9 separate modules. We show that one round of shuffling using the 27 trypsinogen entry plasmids can easily produce the 19,683 different possible combinations in one single restriction-ligation and that expression screening of a subset of the library allows identification of variants that can lead to higher expression levels of trypsin activity. This protocol, that we call ‘Golden Gate shuffling’, is robust, simple and efficient, can be performed with templates that have no homology, and can be combined with other shuffling protocols in order to introduce any variation in any part of a given gene.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BioEssays
                BioEssays
                Wiley
                0265-9247
                1521-1878
                August 2021
                July 15 2021
                August 2021
                : 43
                : 8
                : 2100052
                Affiliations
                [1 ]Département de biochimie and Center for Green Chemistry and Catalysis (CGCC) Université de Montréal Montréal Quebec Canada
                [2 ]PROTEO The Québec Network for Research on Protein Function, Engineering and Applications Québec Quebec Canada
                [3 ]Département de chimie Université de Montréal Montréal Quebec Canada
                [4 ]School of Chemistry University of Nottingham Nottingham UK
                Article
                10.1002/bies.202100052
                c0752fac-7ef7-41e6-8b08-00f5df638492
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article