0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perspectives on improving crop Rubisco by directed evolution

      , ,
      Seminars in Cell & Developmental Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.

          Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deep mutational scanning: a new style of protein science.

            Mutagenesis provides insight into proteins, but only recently have assays that couple genotype to phenotype been used to assess the activities of as many as 1 million mutant versions of a protein in a single experiment. This approach-'deep mutational scanning'-yields large-scale data sets that can reveal intrinsic protein properties, protein behavior within cells and the consequences of human genetic variation. Deep mutational scanning is transforming the study of proteins, but many challenges must be tackled for it to fulfill its promise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic strategies for improving crop yields

              The current trajectory for crop yields is insufficient to nourish the world's population by 20501. Greater and more consistent crop production must be achieved against a backdrop of climatic stress that limits yields, owing to shifts in pests and pathogens, precipitation, heat-waves and other weather extremes. Here we consider the potential of plant sciences to address post-Green Revolution challenges in agriculture and explore emerging strategies for enhancing sustainable crop production and resilience in a changing climate. Accelerated crop improvement must leverage naturally evolved traits and transformative engineering driven by mechanistic understanding, to yield the resilient production systems that are needed to ensure future harvests.
                Bookmark

                Author and article information

                Journal
                Seminars in Cell & Developmental Biology
                Seminars in Cell & Developmental Biology
                Elsevier BV
                10849521
                March 2024
                March 2024
                : 155
                : 37-47
                Article
                10.1016/j.semcdb.2023.04.003
                a2756ead-351f-43b4-b57c-0203cd917cd5
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article