33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specific versus Non-Specific Immune Responses in an Invertebrate Species Evidenced by a Comparative de novo Sequencing Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5′-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5′-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs) of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences) belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance of gene duplication and acquisition of paralog functional diversity in the evolution of specific invertebrate immune responses.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity.

          Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae.

            We characterize a novel hemocyte-specific acute phase glycoprotein from the malaria vector, Anopheles gambiae. It shows substantial structural and functional similarities, including the highly conserved thioester motif, to both a central component of mammalian complement system, factor C3, and to a pan-protease inhibitor, alpha2-macroglobulin. Most importantly, this protein serves as a complement-like opsonin and promotes phagocytosis of some Gram-negative bacteria in a mosquito hemocyte-like cell line. Chemical inactivation by methylamine and depletion by double-stranded RNA knockout demonstrate that this function is dependent on the internal thioester bond. This evidence of a complement-like function in a protostome animal adds substantially to the accumulating evidence of a common ancestry of immune defenses in insects and vertebrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple modes of RNA recognition by zinc finger proteins.

              Zinc finger proteins are generally thought of as DNA-binding transcription factors; however, certain classes of zinc finger proteins, including the common C(2)H(2) zinc fingers, function as RNA-binding proteins. Recent structural studies of the C(2)H(2) zinc fingers of transcription factor IIIA (TFIIIA) and the CCCH zinc fingers of Tis11d in complex with their RNA targets have revealed new modes of zinc finger interaction with nucleic acid. The three C(2)H(2) zinc fingers of TFIIIA use two modes of RNA recognition that differ from the classical mode of DNA recognition, whereas the CCCH zinc fingers of Tis11d recognize specific AU-rich sequences through backbone atom interaction with the Watson-Crick edges of the adenine and uracil bases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 March 2012
                : 7
                : 3
                : e32512
                Affiliations
                [1 ]INRA/CNRS/UNS, Institut Sophia Agrobiotech, Sophia Antipolis, France
                [2 ]Department of Biotechnology, Periyar University, Salem, India
                [3 ]UdS, UPR 9022 CNRS, IBMC, 15 rue Rene Descartes, Strasbourg, France
                [4 ]CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Université de Perpignan Via Domitia, Perpignan, France
                [5 ]INRA/CNRS, UMR441/2594, Laboratoire Interactions Plantes Micro-organismes, Chemin de Borde Rouge, Castanet Tolosan, France
                French National Centre for Scientific Research - Université Aix-Marseille, France
                Author notes

                Conceived and designed the experiments: CC JMR. Performed the experiments: GD NE OB BG. Analyzed the data: ED CC GD EW. Contributed reagents/materials/analysis tools: ED EW BG JG CC. Wrote the paper: CC GD BG DD. Designed bioinformatic pipeline: ED EW JG Implemented the bioinformatic pipeline: ED EW JG.

                Article
                PONE-D-11-23571
                10.1371/journal.pone.0032512
                3299671
                22427848
                bfb45ff3-a1c0-4ed3-9e77-8ac242f270ab
                Deleury et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 November 2011
                : 27 January 2012
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Genomics
                Genome Analysis Tools
                Immunology
                Immunity
                Microbiology
                Immunity
                Model Organisms
                Animal Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article