3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment

      ,
      Trends in Environmental Analytical Chemistry
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: not found
          • Article: not found

          Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vitro selection of RNA molecules that bind specific ligands.

            Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules. Roughly one in 10(10) random sequence RNA molecules folds in such a way as to create a specific binding site for small ligands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing

              Detection of analytes with field-effect transistors bearing ligand-specific receptors is fundamentally limited by the shielding created by the electrical double layer (the "Debye length" limitation). We detected small molecules under physiological high ionic-strength conditions by modifying printed ultrathin metal-oxide field-effect transistor arrays with deoxyribonucleotide aptamers selected to bind their targets adaptively. Target-induced conformational changes of negatively charged aptamer phosphodiester backbones in close proximity to semiconductor channels gated conductance in physiological buffers, resulting in highly sensitive detection. Sensing of charged and electroneutral targets (serotonin, dopamine, glucose, and sphinghosine-1-phosphate) was enabled by specifically isolated aptameric stem-loop receptors.
                Bookmark

                Author and article information

                Journal
                Trends in Environmental Analytical Chemistry
                Trends in Environmental Analytical Chemistry
                Elsevier BV
                22141588
                December 2022
                December 2022
                : 36
                : e00184
                Article
                10.1016/j.teac.2022.e00184
                bf257863-51d1-461d-ad44-2b7e1f995511
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article