48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          The reduction of graphene oxide

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intercalation and delamination of layered carbides and carbonitrides.

            Intercalation and delamination of two-dimensional solids in many cases is a requisite step for exploiting their unique properties. Herein we report on the intercalation of two-dimensional Ti3C2, Ti3CN and TiNbC-so called MXenes. Intercalation of hydrazine, and its co-intercalation with N,N-dimethylformamide, resulted in increases of the c-lattice parameters of surface functionalized f-Ti3C2, from 19.5 to 25.48 and 26.8 Å, respectively. Urea is also intercalated into f-Ti3C2. Molecular dynamics simulations suggest that a hydrazine monolayer intercalates between f-Ti3C2 layers. Hydrazine is also intercalated into f-Ti3CN and f-TiNbC. When dimethyl sulphoxide is intercalated into f-Ti3C2, followed by sonication in water, the f-Ti3C2 is delaminated forming a stable colloidal solution that is in turn filtered to produce MXene 'paper'. The latter shows excellent Li-ion capacity at extremely high charging rates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

              The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                October 2017
                October 2017
                August 11 2017
                : 29
                : 38
                : 1702367
                Affiliations
                [1 ]State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
                [2 ]School of Materials Science and Engineering; Henan Polytechnic University; Jiaozuo 454003 China
                Article
                10.1002/adma.201702367
                29280210
                beb05b93-b1c6-48d4-b981-479309b8c117
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article