0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Patternable Nanocellulose/Ti 3C 2T x Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

            Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              25th anniversary article: MXenes: a new family of two-dimensional materials.

              Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Applied Materials & Interfaces
                ACS Appl. Mater. Interfaces
                American Chemical Society (ACS)
                1944-8244
                1944-8252
                August 03 2022
                July 21 2022
                August 03 2022
                : 14
                : 30
                : 35040-35052
                Affiliations
                [1 ]Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
                [2 ]College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
                [3 ]College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
                [4 ]Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
                [5 ]College of Engineering, University of Georgia, Athens, Georgia 30605, United States
                Article
                10.1021/acsami.2c11567
                9edaabec-e201-45e2-9c5d-5e897240321f
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article