7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can provide images of different contrasts (i.e., modalities). Fusing this multi-modal data has proven particularly effective for boosting model performance in many tasks. However, due to poor data quality and frequent patient dropout, collecting all modalities for every patient remains a challenge. Medical image synthesis has been proposed as an effective solution, where any missing modalities are synthesized from the existing ones. In this paper, we propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis, which learns a mapping from multi-modal source images (i.e., existing modalities) to target images (i.e., missing modalities). In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality, and a fusion network is employed to learn the common latent representation of multi-modal data. Then, a multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality, acting as a generator to synthesize the target images. Moreover, a layer-wise multi-modal fusion strategy effectively exploits the correlations among multiple modalities, where a Mixed Fusion Block (MFB) is proposed to adaptively weight different fusion strategies. Extensive experiments demonstrate the proposed model outperforms other state-of-the-art medical image synthesis methods.

          Related collections

          Author and article information

          Journal
          IEEE Trans Med Imaging
          IEEE transactions on medical imaging
          Institute of Electrical and Electronics Engineers (IEEE)
          1558-254X
          0278-0062
          Sep 2020
          : 39
          : 9
          Article
          10.1109/TMI.2020.2975344
          32086202
          be990618-cad6-46eb-869f-095feb2f3179
          History

          Comments

          Comment on this article