Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km).
Twenty‐two male trained runners participated in this study. Subjects ran four 4‐min trials at 13 km‧h −1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters.
There were significant differences in RE between conditions ( p = 0.01; n 2 = 0.17).
There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) ( p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes ( p < 0.05; ES = 0.27) with significant differences between conditions in contact time.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.