32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated analysis of DNA methylation and microRNA regulation of the lung adenocarcinoma transcriptome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung adenocarcinoma, as a common type of non-small cell lung cancer (40%), poses a significant threat to public health worldwide. The present study aimed to determine the transcriptional regulatory mechanisms in lung adenocarcinoma. Illumina sequence data GSE 37764 including expression profiling, methylation profiling and non-coding RNA profiling of 6 never-smoker Korean female patients with non-small cell lung adenocarcinoma were obtained from the Gene Expression Omnibus (GEO) database. Differentially methylated genes, differentially expressed genes (DEGs) and differentially expressed microRNAs (miRNAs) between normal and tumor tissues of the same patients were screened with tools in R. Functional enrichment analysis of a variety of differential genes was performed. DEG-specific methylation and transcription factors (TFs) were analyzed with ENCODE ChIP-seq. The integrated regulatory network of DEGs, TFs and miRNAs was constructed. Several overlapping DEGs, such as v-ets avian erythroblastosis virus E26 oncogene homolog ( ERG) were screened. DEGs were centrally modified by histones of trimethylation of lysine 27 on histone H3 (H3K27me3) and di-acetylation of lysine 12 or 20 on histone H2 (H2BK12/20AC). Upstream TFs of DEGs were enriched in different ChIP-seq clusters, such as glucocorticoid receptors (GRs). Two miRNAs (miR-126-3p and miR-30c-2-3p) and three TFs including homeobox A5 (HOXA5), Meis homeobox 1 (MEIS1) and T-box 5 (TBX5), played important roles in the integrated regulatory network conjointly. These DEGs, and DEG-related histone modifications, TFs and miRNAs may be important in the pathogenesis of lung adenocarcinoma. The present results may indicate directions for the next step in the study of the further elucidation and targeted prevention of lung adenocarcinoma.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support

          As the relevant literature and the number of experiments increase at a super linear rate, databases that curate and collect experimentally verified microRNA (miRNA) targets have gradually emerged. These databases attempt to provide efficient access to this wealth of experimental data, which is scattered in thousands of manuscripts. Aim of TarBase 6.0 (http://www.microrna.gr/tarbase) is to face this challenge by providing a significant increase of available miRNA targets derived from all contemporary experimental techniques (gene specific and high-throughput), while incorporating a powerful set of tools in a user-friendly interface. TarBase 6.0 hosts detailed information for each miRNA–gene interaction, ranging from miRNA- and gene-related facts to information specific to their interaction, the experimental validation methodologies and their outcomes. All database entries are enriched with function-related data, as well as general information derived from external databases such as UniProt, Ensembl and RefSeq. DIANA microT miRNA target prediction scores and the relevant prediction details are available for each interaction. TarBase 6.0 hosts the largest collection of manually curated experimentally validated miRNA–gene interactions (more than 65 000 targets), presenting a 16.5–175-fold increase over other available manually curated databases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways

            MicroRNAs (miRNAs) are key regulators of diverse biological processes and their functional analysis has been deemed central in many research pipelines. The new version of DIANA-miRPath web server was redesigned from the ground-up. The user of DNA Intelligent Analysis (DIANA) DIANA-miRPath v2.0 can now utilize miRNA targets predicted with high accuracy based on DIANA-microT-CDS and/or experimentally verified targets from TarBase v6; combine results with merging and meta-analysis algorithms; perform hierarchical clustering of miRNAs and pathways based on their interaction levels; as well as elaborate sophisticated visualizations, such as dendrograms or miRNA versus pathway heat maps, from an intuitive and easy to use web interface. New modules enable DIANA-miRPath server to provide information regarding pathogenic single nucleotide polymorphisms (SNPs) in miRNA target sites (SNPs module) or to annotate all the predicted and experimentally validated miRNA targets in a selected molecular pathway (Reverse Search module). DIANA-miRPath v2.0 is an efficient and yet easy to use tool that can be incorporated successfully into miRNA-related analysis pipelines. It provides for the first time a series of highly specific tools for miRNA-targeted pathway analysis via a web interface and can be accessed at http://www.microrna.gr/miRPathv2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lung cancer in never smokers: a review.

              Lung cancer is the leading cause of cancer-related death in the United States. Although tobacco smoking accounts for the majority of lung cancer, approximately 10% of patients with lung cancer in the United States are lifelong never smokers. Lung cancer in the never smokers (LCINS) affects women disproportionately more often than men. Only limited data are available on the etiopathogenesis, molecular abnormalities, and prognosis of LCINS. Several etiologic factors have been proposed for the development of LCINS, including exposure to radon, cooking fumes, asbestos, heavy metals, and environmental tobacco smoke, human papillomavirus infection, and inherited genetic susceptibility. However, the relative significance of these individual factors among different ethnic populations in the development of LCINS has not been well-characterized. Adenocarcinoma is the predominant histologic subtype reported with LCINS. Striking differences in response rates and outcomes are seen when patients with advanced non-small-cell lung cancer (NSCLC) who are lifelong never smokers are treated with epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors such as gefitinib or erlotinib compared with the outcomes with these agents in patients with tobacco-associated lung cancer. Interestingly, the activating mutations in the EGFR-TK inhibitors have been reported significantly more frequently in LCINS than in patients with tobacco-related NSCLC. This review will summarize available data on the epidemiology, risk factors, molecular genetics, management options, and outcomes of LCINS.
                Bookmark

                Author and article information

                Journal
                Oncol Rep
                Oncol. Rep
                Oncology Reports
                D.A. Spandidos
                1021-335X
                1791-2431
                August 2015
                29 May 2015
                29 May 2015
                : 34
                : 2
                : 585-594
                Affiliations
                Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China
                Author notes
                Correspondence to: Dr Lin Zhang, Department of Thoracic Surgery, Chinese Medical University Affiliated No. 1 Hospital, Shenyang, Liaoning 110001, P.R. China, E-mail: linzhangzhl@ 123456163.com
                Article
                or-34-02-0585
                10.3892/or.2015.4023
                4487669
                26035298
                bdf1d375-f2fb-4860-894f-2a7828954f77
                Copyright © 2015, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 27 January 2015
                : 20 April 2015
                Categories
                Articles

                lung adenocarcinoma,differentially expressed genes,microrna,transcription factors,methylation

                Comments

                Comment on this article