17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum-enhanced multiparameter estimation in multiarm interferometers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation over that achievable by classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript we provide conditions of useful particle (qudit) entanglement for multiphase estimation and adapt them to multiarm Mach-Zehnder interferometry. We theoretically discuss benchmark multimode Fock states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated photonics technology.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum metrology

          , , (2005)
          We point out a general framework that encompasses most cases in which quantum effects enable an increase in precision when estimating a parameter (quantum metrology). The typical quantum precision-enhancement is of the order of the square root of the number of times the system is sampled. We prove that this is optimal and we point out the different strategies (classical and quantum) that permit to attain this bound.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Silica-on-Silicon Waveguide Quantum Circuits

            Quantum technologies based on photons are anticipated in the areas of information processing, communication, metrology, and lithography. While there have been impressive proof-of-principle demonstrations in all of these areas, future technologies will likely require an integrated optics architecture for improved performance, miniaturization and scalability. We demonstrated high- fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8(5)%; a controlled-NOT gate with logical basis fidelity of 94.3(2)%; and a path entangled state of two photons with fidelity >92%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Beating the Standard Quantum Limit with Four Entangled Photons

              Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrate an optical phase measurement with an entangled four photon interference visibility greater than the threshold to beat the standard quantum limit--the limit attainable without entanglement. These results open the way for new high-precision measurement applications.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 July 2016
                2016
                : 6
                : 28881
                Affiliations
                [1 ]Dipartimento di Fisica, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
                [2 ]QSTAR, INO-CNR and LENS , Largo Enrico Fermi 2, I-50125 Firenze, Italy
                Author notes
                Article
                srep28881
                10.1038/srep28881
                4933875
                27381743
                bdcb04f2-aede-4dce-bcf0-e913dd5e645e
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 June 2015
                : 13 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article