63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo.

      Journal of Ethnopharmacology
      Anti-Bacterial Agents, chemistry, pharmacology, therapeutic use, Democratic Republic of the Congo, Drug Evaluation, Preclinical, methods, statistics & numerical data, Gram-Negative Bacteria, drug effects, growth & development, Gram-Positive Bacteria, Medicine, African Traditional, Oils, Volatile, Phytotherapy, Seeds

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chemical composition of essential oils from 15 aromatic medicinal plant species growing in the Democratic Republic of Congo have been studied. More than 15 constituents in an amount higher than 0.1% were identified in each essential oil. 1,8-cineole, alpha and beta-pinene, p-cymene, myrcene, gamma-terpinene, alpha-terpineol and limonene were prevalent constituents in almost more than 10 selected plant species. Results from the antibacterial testing by the diffusion method indicate that all essential oils (5 microl per disc) inhibited the growth of selected bacteria at different extents. The most active antibacterial essential oils were those of the leaves of Eucalyptus camadulensis and Eucalyptus terticornis (12-30 mm zone diameter of inhibition). They showed particularly a most potent inhibition of Pseudomonas aeruginosa growth (15-16 mm), followed by Eucalyptus robusta (12 mm). Essential oils from the leaves of Eucalyptus alba, Eucalyptus citriodora, Eucalyptus deglupta, Eucalyptus globulus, Eucalyptus saligna, Eucalyptus robusta, Aframomum stipulatum, Cymbopogon citratus, Ocimum americanum and that of the seeds of Monodora myristica showed also a good antibacterial activity (10-18 mm). Eucalyptus propinqua, Eucalyptus urophylla and Ocimum gratissimum essential oils were the less active samples against the selected bacteria. No correlation between the amount of major constituents such as 1,8-cineol, alpha-pinene, p-cymene, cryptone or thymol and the antibacterial activity was observed.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          Antibacterial and Antifungal Properties of Essential Oil Components

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia.

            Tea tree oil, or the essential oil of Melaleuca alternifolia, is becoming increasingly popular as a naturally occurring antimicrobial agent. The antimicrobial activity of eight components of tea tree oil was evaluated using disc diffusion and broth microdilution methods. Attempts were also made to overcome methodological problems encountered with testing compounds which have limited solubility in aqueous media. After assessing media with and without solubilizing agents, the disc diffusion method was used to determine the susceptibility of a range of micro-organisms to 1,8-cineole, 1-terpinen-4-ol, rho-cymene, linalool, alpha-terpinene, gamma-terpinene, alpha-terpineol and terpinolene. While the disc diffusion method lacked reproducibility, it was considered useful as a procedure for screening for antimicrobial activity. Terpinen-4-ol was active against all the test organisms while rho-cymene demonstrated no antimicrobial activity. Linalool and alpha-terpineol were active against all organisms with the exception of Pseudomonas aeruginosa. Minimum inhibitory and minimum cidal concentrations of each component against Candida albicans, Escherichia coli and Staphylococcus aureus were determined using a broth microdilution method. Modifications to this method overcame solubility and turbidity problems associated with the oil components and allowed the antimicrobial activity of each of the components to be quantified reproducibly. There was reasonable agreement between minimum inhibitory concentrations and zones of inhibition. These results may have significant implications for the future development of tea tree oil as an antimicrobial agent.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antimicrobial activity of essential oils: a 1976-1986 literature review. Aspects of the test methods.

                Bookmark

                Author and article information

                Comments

                Comment on this article