Ambiguous optical illusions have been a paradigmatic object of fascination, research and inspiration in arts, psychology and video games. However, accurate computational models of perception of ambiguous figures have been elusive. In this paper, we design and train a deep neural network model to simulate human perception of the Necker cube, an ambiguous drawing with several alternating possible interpretations. Defining the weights of the neural network connection using a quantum generator of truly random numbers, in agreement with the emerging concepts of quantum artificial intelligence and quantum cognition, we reveal that the actual perceptual state of the Necker cube is a qubit-like superposition of the two fundamental perceptual states predicted by classical theories. Our results finds applications in video games and virtual reality systems employed for training of astronauts and operators of unmanned aerial vehicles. They are also useful for researchers working in the fields of machine learning and vision, psychology of perception and quantum–mechanical models of human mind and decision making.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.