Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ca2+/calmodulin-dependent activation and inactivation mechanisms of alphaCaMKII and phospho-Thr286-alphaCaMKII.

      Biochemistry
      Aminoquinolines, metabolism, Animals, Brain, Calcium, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Calcium-Calmodulin-Dependent Protein Kinases, genetics, Calmodulin, Enzyme Activation, Fluorescent Dyes, Myosin Light Chains, Phosphorylation, Swine, Threonine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thr(286) autophosphorylation is important for the role of alphaCaMKII in learning and memory. Phospho-Thr(286)-alphaCaMKII has been described to have two types of activity: Ca(2+)-independent partial activity and Ca(2+)/calmodulin-activated full activity. We investigated the mechanism of switching between the two activities in order to relate them to the physiological functioning of alphaCaMKII. Using a fluorometric coupled enzyme assay and smooth muscle myosin light chain (MLC) as substrate, we found that (1) Ca(2+)-independent activity of phospho-Thr(286)-alphaCaMKII represents 5.0 (+/-3.7)% of the activity measured in the presence of optimal concentrations of Ca(2+) and calmodulin and (2) Ca(2+) in the presence of calmodulin activates the enzyme with a K(m) of 137 (+/-56) nM and a Hill coefficient n = 1.8 (+/-0.3). In contrast, unphosphorylated alphaCaMKII has a K(m) for Ca(2+) in the presence of calmodulin of 425 (+/-119) nM and a Hill coefficient n = 5.4 (+/-0.4). Thus, the activity of phospho-Thr(286)-alphaCaMKII is essentially Ca(2+)/calmodulin dependent with MLC as substrate. In physiological terms, our data suggest that alphaCaMKII is only activated in stimulated neurones whereas Ca(2+)/calmodulin activation of phospho-Thr(286)-alphaCaMKII can occur in resting cells (approximately 100 nM [Ca(2+)]). Stopped-flow experiments using Ca(2+)/TA-cal [Ca(2+)/2-chloro-(epsilon-amino-Lys(75))-[6-[4-(N,N-diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin] showed that at 100 nM [Ca(2+)] partially Ca(2+)-saturated Ca(2+)/cal.phospho-Thr(286)-alphaCaMKII complexes existed. These are likely to account for the activity of the phospho-Thr(286)-alphaCaMKII enzyme at resting [Ca(2+)]. Ca(2+) dissociation measurements by a fluorescent Ca(2+) chelator revealed that the limiting Ca(2+) dissociation rate constants were 1.5 s(-1) from the Ca(2+)/cal.alphaCaMKII and 0.023 s(-1) from the Ca(2+)/cal.phospho-Thr(286)-alphaCaMKII complex, accounting for the differences in the Ca(2+) sensitivities of the Ca(2+)/cal.alphaCaMKII and Ca(2+)/cal.phospho-Thr(286)-alphaCaMKII enzymes.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content251

          Cited by9