28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca 2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term potentiation and memory.

          M A Lynch (2004)
          One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular basis of CaMKII function in synaptic and behavioural memory.

            Long-term potentiation (LTP) in the CA1 region of the hippocampus has been the primary model by which to study the cellular and molecular basis of memory. Calcium/calmodulin-dependent protein kinase II (CaMKII) is necessary for LTP induction, is persistently activated by stimuli that elicit LTP, and can, by itself, enhance the efficacy of synaptic transmission. The analysis of CaMKII autophosphorylation and dephosphorylation indicates that this kinase could serve as a molecular switch that is capable of long-term memory storage. Consistent with such a role, mutations that prevent persistent activation of CaMKII block LTP, experience-dependent plasticity and behavioural memory. These results make CaMKII a leading candidate in the search for the molecular basis of memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heteromeric NMDA receptors: molecular and functional distinction of subtypes.

              The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine. Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate- and NMDA-activated currents only when they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                4 September 2012
                : 7
                : 9
                : e43810
                Affiliations
                [1]EMBL European Bioinformatics Institute, Hinxton, United Kingdom
                University of Toronto, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LL MIS NL. Performed the experiments: LL. Analyzed the data: LL. Contributed reagents/materials/analysis tools: LL MIS. Wrote the paper: LL MIS NL.

                [¤]

                Current address: California Institute of Technology, Pasadena, California, United States of America

                Article
                PONE-D-12-06601
                10.1371/journal.pone.0043810
                3433481
                22962589
                89b3e055-569f-4a46-bad3-32bdc0cd9d48
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 March 2012
                : 26 July 2012
                Page count
                Pages: 17
                Funding
                These authors have no support or funding to report.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Synapses
                Biochemistry
                Neurochemistry
                Synaptic Plasticity
                Computational Biology
                Computational Neuroscience
                Molecular Cell Biology
                Signal Transduction
                Signaling Pathways
                Calcium-Mediated Signal Transduction
                Neuroscience
                Molecular Neuroscience
                Signaling Pathways
                Computational Neuroscience
                Learning and Memory
                Medicine
                Anatomy and Physiology
                Neurological System
                Synapses

                Uncategorized
                Uncategorized

                Comments

                Comment on this article