1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhibition of wound healing in fresh-cut potatoes by ascorbic acid is associated with control of the levels of reactive oxygen species and the AsA-GSH cycle

      , , , , ,
      Scientia Horticulturae
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control.

            To cope with environmental fluctuations and to prevent invasion by pathogens, plant metabolism must be flexible and dynamic. Active oxygen species, whose formation is accelerated under stress conditions, must be rapidly processed if oxidative damage is to be averted. The lifetime of active oxygen species within the cellular environment is determined by the antioxidative system, which provides crucial protection against oxidative damage. The antioxidative system comprises numerous enzymes and compounds of low molecular weight. While research into the former has benefited greatly from advances in molecular technology, the pathways by which the latter are synthesized have received comparatively little attention. The present review emphasizes the roles of ascorbate and glutathione in plant metabolism and stress tolerance. We provide a detailed account of current knowledge of the biosynthesis, compartmentation, and transport of these two important antioxidants, with emphasis on the unique insights and advances gained by molecular exploration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.

              R. Alscher (2002)
              Reactive O(2) species (ROS) are produced in both unstressed and stressed cells. Plants have well-developed defence systems against ROS, involving both limiting the formation of ROS as well as instituting its removal. Under unstressed conditions, the formation and removal of O(2) are in balance. However, the defence system, when presented with increased ROS formation under stress conditions, can be overwhelmed. Within a cell, the superoxide dismutases (SODs) constitute the first line of defence against ROS. Specialization of function among the SODs may be due to a combination of the influence of subcellular location of the enzyme and upstream sequences in the genomic sequence. The commonality of elements in the upstream sequences of Fe, Mn and Cu/Zn SODs suggests a relatively recent origin for those regulatory regions. The differences in the upstream regions of the three FeSOD genes suggest differing regulatory control which is borne out in the research literature. The finding that the upstream sequences of Mn and peroxisomal Cu/Zn SODs have three common elements suggests a common regulatory pathway. The tools are available to dissect further the molecular basis for antioxidant defence responses in plant cells. SODs are clearly among the most important of those defences, when coupled with the necessary downstream events for full detoxification of ROS.
                Bookmark

                Author and article information

                Journal
                Scientia Horticulturae
                Scientia Horticulturae
                Elsevier BV
                03044238
                January 2024
                January 2024
                : 323
                : 112472
                Article
                10.1016/j.scienta.2023.112472
                bc21e660-e570-44d3-89a3-8995063097c7
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article