6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Action Mechanisms of Curcumin in Alzheimer’s Disease and Its Brain Targeted Delivery

      review-article
      ,
      Materials
      MDPI
      AD, curcumin, lipid-based carriers, PLGA, in vivo, drug delivery, antioxidant

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AD is a chronic neurodegenerative disease. Many different signaling pathways, such as Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of the most promising is curcumin; however, because it has difficulty permeating the blood–brain barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating AD and indicated the challenges that require further research.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems

          Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study.

            Similar to most chronic diseases, Alzheimer's disease (AD) develops slowly from a preclinical phase into a fully expressed clinical syndrome. We aimed to use longitudinal data to calculate the rates of amyloid β (Aβ) deposition, cerebral atrophy, and cognitive decline. In this prospective cohort study, healthy controls, patients with mild cognitive impairment (MCI), and patients with AD were assessed at enrolment and every 18 months. At every visit, participants underwent neuropsychological examination, MRI, and a carbon-11-labelled Pittsburgh compound B ((11)C-PiB) PET scan. We included participants with three or more (11)C-PiB PET follow-up assessments. Aβ burden was expressed as (11)C-PiB standardised uptake value ratio (SUVR) with the cerebellar cortex as reference region. An SUVR of 1·5 was used to discriminate high from low Aβ burdens. The slope of the regression plots over 3-5 years was used to estimate rates of change for Aβ deposition, MRI volumetrics, and cognition. We included those participants with a positive rate of Aβ deposition to calculate the trajectory of each variable over time. 200 participants (145 healthy controls, 36 participants with MCI, and 19 participants with AD) were assessed at enrolment and every 18 months for a mean follow-up of 3·8 (95% CI CI 3·6-3·9) years. At baseline, significantly higher Aβ burdens were noted in patients with AD (2·27, SD 0·43) and those with MCI (1·94, 0·64) than in healthy controls (1·38, 0·39). At follow-up, 163 (82%) of the 200 participants showed positive rates of Aβ accumulation. Aβ deposition was estimated to take 19·2 (95% CI 16·8-22·5) years in an almost linear fashion-with a mean increase of 0·043 (95% CI 0·037-0·049) SUVR per year-to go from the threshold of (11)C-PiB positivity (1·5 SUVR) to the levels observed in AD. It was estimated to take 12·0 (95% CI 10·1-14·9) years from the levels observed in healthy controls with low Aβ deposition (1·2 [SD 0·1] SUVR) to the threshold of (11)C-PiB positivity. As AD progressed, the rate of Aβ deposition slowed towards a plateau. Our projections suggest a prolonged preclinical phase of AD in which Aβ deposition reaches our threshold of positivity at 17·0 (95% CI 14·9-19·9) years, hippocampal atrophy at 4·2 (3·6-5·1) years, and memory impairment at 3·3 (2·5-4·5) years before the onset of dementia (clinical dementia rating score 1). Aβ deposition is slow and protracted, likely to extend for more than two decades. Such predictions of the rate of preclinical changes and the onset of the clinical phase of AD will facilitate the design and timing of therapeutic interventions aimed at modifying the course of this illness. Science and Industry Endowment Fund (Australia), The Commonwealth Scientific and Industrial Research Organisation (Australia), The National Health and Medical Research Council of Australia Program and Project Grants, the Austin Hospital Medical Research Foundation, Victorian State Government, The Alzheimer's Drug Discovery Foundation, and the Alzheimer's Association. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of acetylcholine in learning and memory.

              Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                16 June 2021
                June 2021
                : 14
                : 12
                : 3332
                Affiliations
                Biomedical Engineering, Boğaziçi University, Rasathane Cd, Kandilli Campus, Istanbul 34684, Turkey; duygu.ege@ 123456boun.edu.tr ; Tel.: +90-530-232-79-12
                Author information
                https://orcid.org/0000-0002-9922-6995
                Article
                materials-14-03332
                10.3390/ma14123332
                8234049
                34208692
                bc0ecffa-05f2-4088-915a-b5075db19483
                © 2021 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 07 May 2021
                : 14 June 2021
                Categories
                Review

                ad,curcumin,lipid-based carriers,plga,in vivo,drug delivery,antioxidant

                Comments

                Comment on this article