97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A maximum pseudo-likelihood approach for estimating species trees under the coalescent model

          Background Several phylogenetic approaches have been developed to estimate species trees from collections of gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are limited. Although the likelihood of a species tree under the multispecies coalescent model has already been derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE) of the species tree (topology, branch lengths, and population sizes) from gene trees under this formula does not exist. In this paper, we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE) of species trees, with branch lengths of the species tree in coalescent units. Results We show that the MPE of the species tree is statistically consistent as the number M of genes goes to infinity. In addition, the probability that the MPE of the species tree matches the true species tree converges to 1 at rate O(M -1). The simulation results confirm that the maximum pseudo-likelihood approach is statistically consistent even when the species tree is in the anomaly zone. We applied our method, Maximum Pseudo-likelihood for Estimating Species Trees (MP-EST) to a mammal dataset. The four major clades found in the MP-EST tree are consistent with those in the Bayesian concatenation tree. The bootstrap supports for the species tree estimated by the MP-EST method are more reasonable than the posterior probability supports given by the Bayesian concatenation method in reflecting the level of uncertainty in gene trees and controversies over the relationship of four major groups of placental mammals. Conclusions MP-EST can consistently estimate the topology and branch lengths (in coalescent units) of the species tree. Although the pseudo-likelihood is derived from coalescent theory, and assumes no gene flow or horizontal gene transfer (HGT), the MP-EST method is robust to a small amount of HGT in the dataset. In addition, increasing the number of genes does not increase the computational time substantially. The MP-EST method is fast for analyzing datasets that involve a large number of genes but a moderate number of species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

            Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae).

              The temperate woody bamboos constitute a distinct tribe Arundinarieae (Poaceae: Bambusoideae) with high species diversity. Estimating phylogenetic relationships among the 11 major lineages of Arundinarieae has been particularly difficult, owing to a possible rapid radiation and the extremely low rate of sequence divergence. Here, we explore the use of chloroplast genome sequencing for phylogenetic inference. We sampled 25 species (22 temperate bamboos and 3 outgroups) for the complete genome representing eight major lineages of Arundinarieae in an attempt to resolve backbone relationships. Phylogenetic analyses of coding versus noncoding sequences, and of different regions of the genome (large single copy and small single copy, and inverted repeat regions) yielded no well-supported contradicting topologies but potential incongruence was found between the coding and noncoding sequences. The use of various data partitioning schemes in analysis of the complete sequences resulted in nearly identical topologies and node support values, although the partitioning schemes were decisively different from each other as to the fit to the data. Our full genomic data set substantially increased resolution along the backbone and provided strong support for most relationships despite the very short internodes and long branches in the tree. The inferred relationships were also robust to potential confounding factors (e.g., long-branch attraction) and received support from independent indels in the genome. We then added taxa from the three Arundinarieae lineages that were not included in the full-genome data set; each of these were sampled for more than 50% genome sequences. The resulting trees not only corroborated the reconstructed deep-level relationships but also largely resolved the phylogenetic placements of these three additional lineages. Furthermore, adding 129 additional taxa sampled for only eight chloroplast loci to the combined data set yielded almost identical relationships, albeit with low support values. We believe that the inferred phylogeny is robust to taxon sampling. Having resolved the deep-level relationships of Arundinarieae, we illuminate how chloroplast phylogenomics can be used for elucidating difficult phylogeny at low taxonomic levels in intractable plant groups.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                2 February 2018
                2018
                : 6
                : e4299
                Affiliations
                [1 ]Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature , Ottawa, ON, Canada
                [2 ]Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University , DeKalb, IL, USA
                [3 ]Center for Data Intensive Sciences, University of Chicago , Chicago, IL, USA
                [4 ]Botanic Gardens and Parks Authority, Kings Park and Botanic Garden , West Perth, WA, Australia
                [5 ]School of Biological Sciences, The University of Western Australia , Crawley, WA, Australia
                [6 ]Department of Ecology, Evolution and Organismal Biology, Iowa State University , Ames, IA, USA
                [7 ]Jonah Ventures , Manhattan, KS, USA
                [8 ]Department of Botany, National Museum of Natural History, Smithsonian Institution , Washington, DC, USA
                [9 ]Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew , Richmond, Surrey, UK
                Author information
                http://orcid.org/0000-0003-1790-4332
                http://orcid.org/0000-0002-2926-4291
                http://orcid.org/0000-0001-6561-3244
                http://orcid.org/0000-0001-9405-5528
                http://orcid.org/0000-0002-8358-4915
                http://orcid.org/0000-0003-0899-1120
                Article
                4299
                10.7717/peerj.4299
                5798404
                29416954
                bb80f8e3-027e-4f56-a60a-6ff9c43e4bfc
                © 2018 Saarela et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 8 August 2017
                : 8 January 2018
                Funding
                Funded by: Plant Molecular and Bioinformatics Center and the Department of Biological Sciences at Northern Illinois University
                Funded by: National Science Foundation
                Award ID: DEB-1120761, DEB-1342782 and DEB-1120750
                This work was supported by the Plant Molecular and Bioinformatics Center and the Department of Biological Sciences at Northern Illinois University and grants from the National Science Foundation to Lynn G. Clark (DEB-1120750) and Melvin R. Duvall (DEB-1120761 and DEB-1342782). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biodiversity
                Evolutionary Studies
                Genomics
                Plant Science
                Taxonomy

                grasses,phylogenomics,plastome,classification,systematics,incongruence,positive selection,purifying selection,aristidoideae,panicoideae

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content550

                Cited by74

                Most referenced authors2,927