80
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seroprevalence of SARS-CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network — 13 Academic Medical Centers, April–June 2020

      research-article
      , MD 1 , , , MD, PhD 2 , , MD 1 , , PhD 2 , , MD 3 , , MD 4 , , MD 5 , , MD 6 , , MD 7 , , MD 7 , , MD 8 , , MD 8 , , MD 9 , , MD 10 , , MD 11 , , MD 11 , , PhD 1 , , MD 1 , , MD 1 , , MD 1 , , MD 1 , , MD 1 , , MD 1 , , MD, PhD 12 , , MD 13 , , MD 14 , , PhD 2 , , MS 2 , , PhD 2 , , PhD 2 , , PhD 2 , , MD 2 , CDC COVID-19 Response Team, IVY Network IVY Network, CDC COVID-19 Response Team IVY Network, CDC COVID-19 Response Team , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Morbidity and Mortality Weekly Report
      Centers for Disease Control and Prevention

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Health care personnel (HCP) caring for patients with coronavirus disease 2019 (COVID-19) might be at high risk for contracting SARS-CoV-2, the virus that causes COVID-19. Understanding the prevalence of and factors associated with SARS-CoV-2 infection among frontline HCP who care for COVID-19 patients are important for protecting both HCP and their patients. During April 3–June 19, 2020, serum specimens were collected from a convenience sample of frontline HCP who worked with COVID-19 patients at 13 geographically diverse academic medical centers in the United States, and specimens were tested for antibodies to SARS-CoV-2. Participants were asked about potential symptoms of COVID-19 experienced since February 1, 2020, previous testing for acute SARS-CoV-2 infection, and their use of personal protective equipment (PPE) in the past week. Among 3,248 participants, 194 (6.0%) had positive test results for SARS-CoV-2 antibodies. Seroprevalence by hospital ranged from 0.8% to 31.2% (median = 3.6%). Among the 194 seropositive participants, 56 (29%) reported no symptoms since February 1, 2020, 86 (44%) did not believe that they previously had COVID-19, and 133 (69%) did not report a previous COVID-19 diagnosis. Seroprevalence was lower among personnel who reported always wearing a face covering (defined in this study as a surgical mask, N95 respirator, or powered air purifying respirator [PAPR]) while caring for patients (5.6%), compared with that among those who did not (9.0%) (p = 0.012). Consistent with persons in the general population with SARS-CoV-2 infection, many frontline HCP with SARS-CoV-2 infection might be asymptomatic or minimally symptomatic during infection, and infection might be unrecognized. Enhanced screening, including frequent testing of frontline HCP, and universal use of face coverings in hospitals are two strategies that could reduce SARS-CoV-2 transmission. HCP who care for patients with COVID-19 are at risk for exposure and infection during patient care–related activities ( 1 , 2 ), and once infected, can spread SARS-CoV-2 to patients, coworkers, and others in the community. Therefore, understanding the frequency of SARS-CoV-2 infection among frontline HCP and characteristics associated with infection among HCP is important for planning effective strategies for minimizing SARS-CoV-2 spread in health care settings and associated communities ( 3 , 4 ). Most persons who are infected with SARS-CoV-2 develop antibodies to SARS-CoV-2 proteins within 1–2 weeks of infection ( 5 ). Serologic testing for SARS-CoV-2 antibodies, albeit having variable sensitivity and specificity ( 6 ), might provide a useful marker for identifying past SARS-CoV-2 infection. In this study, SARS-CoV-2 antibodies were measured among HCP who regularly cared for patients with COVID-19, with the aim of identifying past infection and describing characteristics associated with seropositive test results. This study was conducted by the Influenza Vaccine Effectiveness in the Critically Ill (IVY) Network, which is a collaboration of academic medical centers in the United States conducting epidemiologic studies on influenza and COVID-19 ( 1 ). Thirteen IVY Network medical centers from 12 states participated.* Each hospital enrolled a convenience sample of HCP ( 1 ) who regularly had direct patient contact in hospital-based units caring for adult COVID-19 patients since February 1, 2020, including emergency departments (EDs), intensive care units (ICUs), and hospital wards. Targeted enrollment was 250 participants per hospital, and volunteers were enrolled during April 3–June 19. HCP who were not working because of illness or quarantine were not enrolled. Participants underwent phlebotomy for serum collection and answered survey questions about demographic characteristics, medical history, symptoms, previous clinical testing for acute SARS-CoV-2 infection, and PPE practices while caring for patients in areas with COVID-19 patients. Participants were classified as having symptoms of an acute viral illness if they reported any of the following signs or symptoms from February 1, 2020, until the enrollment date: fever (temperature >99.5°F [37.5°C]), cough, shortness of breath, myalgias, sore throat, vomiting, diarrhea, or change in sense of taste or smell. Participants were asked whether they thought that they previously had COVID-19 ( 7 ). Participants also self-reported PPE use in the past week and whether they personally experienced at least one episode of PPE shortage since February 1, 2020, defined as inability to access at least one of the following forms of PPE when it was wanted for patient care: surgical masks, N95 respirators, PAPRs, gowns, gloves, or face shields. CDC received serum specimens and completed testing for SARS-CoV-2 antibodies with an enzyme-linked immunosorbent assay against the extracellular domain of the SARS-CoV-2 spike protein. † This assay uses anti-pan–immunoglobulin (Ig) secondary antibodies that detect any SARS-CoV-2 immunoglobulin isotype, including IgM, IgG, and IgA. A specimen was considered reactive if it had a signal to threshold ratio >1.0 at a serum dilution of 1:100, correcting for background. Previous validation work with this assay demonstrated approximate sensitivity of 96% and specificity of 99%. Local area community incidence of COVID-19 was estimated from SARS-CoV-2 test results reported at hospital-area county public health departments. Local area community incidence was calculated as the total number of reported COVID-19 cases at the health departments from the beginning of the pandemic through 7 days after the first date of HCP enrollment at the participating hospital divided by county population and multiplied by 1,000 ( 8 ). Participants were classified as having positive serology (i.e., SARS-CoV-2 antibodies detected at or above the threshold) or negative serology (i.e., SARS-CoV-2 antibodies below the threshold). Characteristics of the seropositive and seronegative groups were compared using Wilcoxon rank-sum tests for continuous variables and Pearson’s chi-squared tests or Fisher’s exact tests for categorical variables. Statistical analyses were conducted using Stata software (version 16; StataCorp). This activity was reviewed by the Institutional Review Boards at the participating medical centers and by CDC and was conducted consistent with applicable federal law and institutional policies. § Among 3,248 enrolled HCP, 1,445 (44%) were nurses, 919 (28%) were physicians, nurse practitioners, or physician assistants, 235 (7%) were respiratory therapists, and 648 (20%) had other clinical roles; the clinical role of one HCP was unknown. The median age of participants was 36 years, and most (80%) reported no underlying medical conditions. Among participants, 1,292 (40%) reported working primarily in an ICU, 1,139 (35%) primarily in an ED, and 817 (25%) primarily in other locations. Among the 3,248 participants, 194 (6.0%) had detectable SARS-CoV-2 antibodies. Seroprevalence varied widely by medical center, ranging from 0.8% (three facilities) to 31.2%, with generally higher seroprevalence at medical centers within counties with high local area community cumulative incidence of COVID-19 (Figure). FIGURE SARS-CoV-2 seroprevalence among a convenience sample of frontline health care personnel and local area community cumulative incidence of COVID-19* — 13 academic medical centers, United States, April–June 2020 † Abbreviation: COVID-19 = coronavirus disease 2019. * Calculated as the total number of reported community COVID-19 cases within a hospital-area county or counties between the beginning of the pandemic and 7 days after the first day of health care personnel enrollment at the hospital divided by population of the county or counties x 1,000. † The medical centers, counties, and dates of enrollment included: Montefiore Medical Center, Bronx, New York (Bronx, Kings, New York, Queens, and Richmond counties, May 4–5, 2020); Baystate Medical Center, Springfield, Massachusetts (Hampden County, April 22–29, 2020); Vanderbilt University Medical Center, Nashville, Tennessee (Davidson County, April 3–13, 2020); UCHealth University of Colorado Hospital, Aurora, Colorado (Adams, Arapahoe, and Denver counties, April 16–20, 2020); Beth Israel Deaconess Medical Center, Boston, Massachusetts (Suffolk County, April 20–27, 2020); UCLA Medical Center, Los Angeles, California (Los Angeles County, May 26–June 5, 2020); Harborview Medical Center, Seattle, Washington (King County, April 30–May 11, 2020); Hennepin County Medical Center, Minneapolis, Minnesota (Hennepin County, April 23–28, 2020); Johns Hopkins Hospital, Baltimore, Maryland (Baltimore County and Baltimore City, June 12–19, 2020); Oregon Health & Sciences University Hospital, Portland, Oregon (Multnomah County, May 6–7, 2020); Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina (Forsyth County April 29–May 7, 2020); Intermountain Medical Center, Murray, Utah (Salt Lake County, April 30, 2020); Ohio State University Wexner Medical Center, Columbus, Ohio (Franklin, Delaware, Licking, Madison, Pickaway, and Fairfield counties, April 20–May 21, 2020). The figure is a combination bar chart showing SARS-CoV-2 seroprevalence among a convenience sample of frontline health care personnel and local area community cumulative incidence of infection at 13 academic medical centers in the United States during April–June 2020. Characteristics of Health Care Personnel With and Without SARS-CoV-2 Antibodies SARS-CoV-2 antibody detection differed among participants according to demographic characteristics. Seropositivity was lower among females (5.3%) than among males (7.2%) (p = 0.03) and among non-Hispanic White participants (4.4%) than among participants of other racial/ethnic groups (9.7%) (p<0.001). Symptoms of an acute viral illness since February 1, 2020, were more prevalent in participants with antibodies detected (71%) than in those without antibodies detected (43%) (p<0.001) (Table). Notably, of 194 participants with antibodies detected, 86 (44%) reported that they did not believe they previously had COVID-19, 56 (29%) reported no symptoms of an acute viral illness since February 1, 2020, and 133 (69%) had not previously had positive test results for acute SARS-CoV-2 infection. A previous positive test was reported by 61 participants, representing 31% of the 194 participants with antibodies detected and 66% of 92 participants with both antibodies detected and previous SARS-CoV-2 testing completed. TABLE Characteristics, previous symptoms, and previous testing for acute SARS-CoV-2 infection among a convenience sample of frontline health care personnel, by SARS-CoV-2 serology results — 13 academic hospitals,* United States, April–June 2020 Characteristic† SARS-CoV-2 serology result, no. (%) p-value§ Positive (n = 194) Negative (n = 3,054) Median age (IQR), years 38 (31–48) 35 (30–45) 0.077 Sex Females 113 (58) 2,014 (66) 0.029 Males 81 (42) 1,040 (34) Race/Ethnicity White, non-Hispanic    102 (54)    2,192 (73) <0.001 Black, non-Hispanic    35 (19)    171 (6) Asian, non-Hispanic    25 (13)    340 (11) Other race, non-Hispanic    4 (2)    73 (2) Hispanic    23 (12)    228 (8) Chronic medical conditions and substance use Any comorbidity¶    37 (19)    607 (20) 0.790 Asthma    14 (7)    302 (10) 0.220 Diabetes mellitus    2 (1)    68 (2) 0.440 Hypertension    19 (10)    213 (7) 0.140 Autoimmune disease    2 (1)    88 (3) 0.170 Current smoker    3 (2)    125 (4) 0.085 Primary location of clinical work Emergency department    61 (31)    1,078 (35) 0.089 Intensive care unit    80 (41)    1,212 (40) Hospital ward    22 (11)    436 (14) Other    31 (16)    328 (11) Clinical role Nurse    73 (38)    1,372 (45) 0.002 Physician, nurse practitioner, or physician assistant    52 (27)    867 (28) Respiratory therapist    10 (5)    225 (7) Paramedic    3 (2)    53 (2) Other**    56 (29)    536 (18) Typical no. of clinical workdays per week since February 1, 2020, median (IQR), days    3 (3–5)    3 (3–4) 0.003 Participant reported belief that he or she previously had COVID-19    108 (56)    554 (18) <0.001 Specific signs or symptoms reported Cough    78 (40)    780 (26) <0.001 Sore throat    57 (29)    764 (25) 0.180 Myalgias    67 (35)    445 (15) <0.001 Fever    58 (30)    367 (12) <0.001 Shortness of breath    40 (21)    315 (10) <0.001 Vomiting    17 (9)    77 (3) <0.001 Diarrhea    38 (20)    292 (10) <0.001 Dysgeusia    55 (28)    84 (3) <0.001 Anosmia    54 (28)    77 (3) <0.001 Cough or fever or shortness of breath    106 (55)    932 (31) <0.001 Any of the above symptoms reported    138 (71)    1,309 (43) <0.001 If any symptoms reported, time from symptom onset to serology specimen collection, median (IQR), days    30 (18–42)    34 (20–60) 0.005 SARS-CoV-2 testing for acute infection completed clinically before serology testing†† Test not done    102 (53)    2,547 (83) <0.001 Test done    92 (47)    507 (17) Test positive 61 (66% of 92 tested) 6 (1% of 507 tested) Test negative or indeterminate 31 (34% of 92 tested) 501 (99% of 507 tested) Abbreviations: COVID-19 = coronavirus disease 2019; IQR = interquartile range. * Seropositive indicates that participants had antibody levels to SARS-CoV-2 detected above a threshold value, whereas seronegative indicates that antibody levels were below the threshold. Participants were from a convenience sample of health care personnel who reported regularly having direct patient contact since February 1, 2020, in units that cared for COVID-19 patients, from one of 13 academic medical centers (Harborview Medical Center [Washington], Oregon Health & Sciences University [Oregon], University of California Los Angeles [California], Hennepin County Medical Center [Minnesota], Vanderbilt University Medical Center [Tennessee], Ohio State University Wexner Medical Center [Ohio], Wake Forest University [North Carolina], Montefiore Medical Center [New York], Beth Israel Deaconess Medical Center [Massachusetts], Baystate Medical Center [Massachusetts], Intermountain Medical Center [Utah], UCHealth University of Colorado Hospital [Colorado], and Johns Hopkins Hospital [Maryland]). † Some participants had missing data for characteristics: age (25), race/ethnicity (55), clinical role (one), typical number of clinical workdays per week (five), whether or not they believed they previously had COVID-19 (one). § Wilcoxon rank-sum tests for continuous variables and Pearson’s chi-squared tests or Fisher’s exact tests for categorical variables. ¶ Participants were asked whether they had 11 chronic medical conditions, including asthma, chronic obstructive pulmonary disease, other chronic lung condition, chronic heart failure, coronary artery disease, diabetes mellitus, hypertension, autoimmune disease, active cancer, or an immunosuppressive condition, or required chronic renal replacement therapy (dialysis). ** Clinical role of the 56 participants with positive serology for SARS-CoV-2 who identified their clinical role as “other” included: patient care technician (22), radiology technician (11), occupational or physical therapist (eight), nursing leadership (five), social worker (three), public safety officer (two), behavioral health worker (one), chaplain (one), speech pathologist (one), housekeeping (one), laboratory technician (one). †† Six participants had negative test results for SARS CoV-2 antibodies and reported a positive clinical test for SARS-CoV-2 before serology testing; among these six participants, 20, 29, 31, 35, 36, and 46 days had elapsed from the clinical test and specimen collection for study serology testing. Personal Protective Equipment Use Use of a face covering during all clinical encounters in the week preceding enrollment was reported by 2,904 (89%) participants. Detection of SARS-CoV-2 antibodies was less common among participants who reported using a face covering for all clinical encounters (6%) than among those who did not (9%) (p = 0.012). Shortages of any PPE equipment since February 1, 2020, were reported by 398 (12%) participants; shortages of N95 respirators (reported by 5% of participants) were those most commonly reported. In eight of the 13 medical centers, >10% of participants reported a PPE shortage. A higher percentage of participants who reported a PPE shortage had detectable SARS-CoV-2 antibodies (9%) than did those who did not report a PPE shortage (6%) (p = 0.009). Discussion Among a convenience sample of HCP who routinely cared for COVID-19 patients in 13 U.S. academic medical centers from February 1, 2020, 6% had evidence of previous SARS-CoV-2 infection, with considerable variation by location that generally correlated with community cumulative incidence. Among participants who had positive test results for SARS-CoV-2 antibodies, approximately one third did not recall any symptoms consistent with an acute viral illness in the preceding months, nearly one half did not suspect that they previously had COVID-19, and approximately two thirds did not have a previous positive test result demonstrating an acute SARS-CoV-2 infection. These findings suggest that some SARS-CoV-2 infections among frontline HCP are undetected and unrecognized, possibly because of the minimally symptomatic or subclinical nature of some infections, underreporting of symptoms, or nonsystematic testing of some personnel with symptomatic infections. This study resulted in the identification of two factors potentially associated with SARS-CoV-2 infection among HCP: PPE shortages and interacting with patients without wearing a face covering. These findings highlight the importance of maintaining PPE supplies at hospitals caring for COVID-19 patients and, assuming adequate supply, adhering to policies that encourage the use of masks for all interactions between HCP and patients. Universal masking has been associated with a significantly lower rate of infection among HCP ( 9 ). The findings in this report are subject to at least four limitations. First, bias might have occurred if personnel at higher or lower risk for infection were less or more likely to volunteer to participate; for example, HCP not working because of illness or quarantine were not recruited and might have been at higher risk for SARS-CoV-2 infection. Second, seroprevalence could be underestimated if participants who were infected had not yet mounted an antibody response or if antibody titers had declined since infection ( 10 ). Third, information on facility-level infection prevention and control practices that could further affect exposure risk was not collected. Also, multivariable models to adjust for confounding were not performed. Finally, among seropositive HCP, exposure that led to SARS-CoV-2 infection could have occurred within the hospital setting or the community and this study could not distinguish between these potential sources of exposure. In general, seroprevalence among HCP across sites correlated with community COVID-19 incidence. SARS-CoV-2 exposures in the hospital could also have occurred between health care providers (e.g., within shared workspaces). Evidence of previous SARS-CoV-2 infection was detected in 6% of frontline HCP from 13 academic medical centers within the first several weeks of U.S. transmission, although prevalence varied considerably by location. A high proportion of personnel with antibodies did not suspect that they had been previously infected. The risk for transmission of SARS-CoV-2 from HCP to others within hospitals might be mitigated by adherence to recommended practices such as universal use of face coverings and suggestions to have dedicated cohorts of HCP caring for patients with COVID-19. In addition to maintaining PPE supplies and instituting universal face covering policies for HCP at work, enhanced screening, including frequent testing of frontline HCP, and universal use of face coverings in hospitals are strategies that could reduce SARS-CoV-2 transmission. Summary What is already known about this topic? Little is known about the prevalence and features of SARS-CoV-2 infection among frontline U.S. health care personnel. What is added by this report? Among 3,248 personnel observed, 6% had antibody evidence of previous SARS-CoV-2 infection; 29% of personnel with SARS-CoV-2 antibodies were asymptomatic in the preceding months, and 69% had not previously received a diagnosis of SARS-CoV-2 infection. Prevalence of SARS-CoV-2 antibodies was lower among personnel who reported always wearing a face covering while caring for patients (6%), compared with those who did not (9%). What are the implications for public health practice? A high proportion of SARS-CoV-2 infections among health care personnel appear to go undetected. Universal use of face coverings and lowering clinical thresholds for testing could be important strategies for reducing hospital transmission.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections

          The clinical features and immune responses of asymptomatic individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been well described. We studied 37 asymptomatic individuals in the Wanzhou District who were diagnosed with RT-PCR-confirmed SARS-CoV-2 infections but without any relevant clinical symptoms in the preceding 14 d and during hospitalization. Asymptomatic individuals were admitted to the government-designated Wanzhou People's Hospital for centralized isolation in accordance with policy1. The median duration of viral shedding in the asymptomatic group was 19 d (interquartile range (IQR), 15-26 d). The asymptomatic group had a significantly longer duration of viral shedding than the symptomatic group (log-rank P = 0.028). The virus-specific IgG levels in the asymptomatic group (median S/CO, 3.4; IQR, 1.6-10.7) were significantly lower (P = 0.005) relative to the symptomatic group (median S/CO, 20.5; IQR, 5.8-38.2) in the acute phase. Of asymptomatic individuals, 93.3% (28/30) and 81.1% (30/37) had reduction in IgG and neutralizing antibody levels, respectively, during the early convalescent phase, as compared to 96.8% (30/31) and 62.2% (23/37) of symptomatic patients. Forty percent of asymptomatic individuals became seronegative and 12.9% of the symptomatic group became negative for IgG in the early convalescent phase. In addition, asymptomatic individuals exhibited lower levels of 18 pro- and anti-inflammatory cytokines. These data suggest that asymptomatic individuals had a weaker immune response to SARS-CoV-2 infection. The reduction in IgG and neutralizing antibody levels in the early convalescent phase might have implications for immunity strategy and serological surveys.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Characteristics of Health Care Personnel with COVID-19 — United States, February 12–April 9, 2020

            As of April 9, 2020, the coronavirus disease 2019 (COVID-19) pandemic had resulted in 1,521,252 cases and 92,798 deaths worldwide, including 459,165 cases and 16,570 deaths in the United States ( 1 , 2 ). Health care personnel (HCP) are essential workers defined as paid and unpaid persons serving in health care settings who have the potential for direct or indirect exposure to patients or infectious materials ( 3 ). During February 12–April 9, among 315,531 COVID-19 cases reported to CDC using a standardized form, 49,370 (16%) included data on whether the patient was a health care worker in the United States; including 9,282 (19%) who were identified as HCP. Among HCP patients with data available, the median age was 42 years (interquartile range [IQR] = 32–54 years), 6,603 (73%) were female, and 1,779 (38%) reported at least one underlying health condition. Among HCP patients with data on health care, household, and community exposures, 780 (55%) reported contact with a COVID-19 patient only in health care settings. Although 4,336 (92%) HCP patients reported having at least one symptom among fever, cough, or shortness of breath, the remaining 8% did not report any of these symptoms. Most HCP with COVID-19 (6,760, 90%) were not hospitalized; however, severe outcomes, including 27 deaths, occurred across all age groups; deaths most frequently occurred in HCP aged ≥65 years. These preliminary findings highlight that whether HCP acquire infection at work or in the community, it is necessary to protect the health and safety of this essential national workforce. Data from laboratory-confirmed COVID-19 cases voluntarily reported to CDC from 50 states, four U.S. territories and affiliated islands, and the District of Columbia, during February 12–April 9 were analyzed. Cases among persons repatriated to the United States from Wuhan, China, and the Diamond Princess cruise ship during January and February were excluded. Public health departments report COVID-19 cases to CDC using a standardized case report form* that collects information on patient demographics, whether the patient is a U.S. health care worker, symptom onset date, specimen collection dates, history of exposures in the 14 days preceding illness onset, COVID-19 symptomology, preexisting medical conditions, and patient outcomes, including hospitalization, intensive care unit (ICU) admission, and death. HCP patient health outcomes, overall and stratified by age, were classified as hospitalized, hospitalized with ICU admission, and deaths. The lower bound of these percentages was estimated by including all cases within each age group in the denominators. Upper bounds were estimated by including only those cases with known information on each outcome as denominators. Data reported to CDC are preliminary and can be updated by health departments over time. The upper quartile of the lag between onset date and reporting to CDC was 10 days. Because submitted forms might have missing or unknown information at the time of report, all analyses are descriptive, and no statistical comparisons were performed. Stata (version 15.1; StataCorp) and SAS (version 9.4; SAS Institute) were used to conduct all analyses. Among 315,531 U.S. COVID-19 cases reported to CDC during February 12–April 9, data on HCP occupational status were available for 49,370 (16%), among whom 9,282 (19%) were identified as HCP (Figure). Data completeness for HCP status varied by reporting jurisdiction; among 12 states that included HCP status on >80% of all reported cases and reported at least one HCP patient, HCP accounted for 11% (1,689 of 15,194) of all reported cases. FIGURE Daily number of COVID-19 cases, by date of symptom onset, among health care personnel and non-health care personnel (N = 43,986)* , † — United States, February 12–April 9, 2020 Abbreviation: COVID-19 = coronavirus disease 2019. * Onset date was calculated for 5,892 (13%) cases where onset date was missing. This was done by subtracting 4 days (median interval from symptom onset to specimen collection date) from the date of earliest specimen collection. Cases with unknown onset and specimen collection dates were excluded. † Ten-day window is used to reflect the upper quartile in lag between the date of symptom onset and date reported to CDC. The figure is a bar chart showing the number of reported COVID-19 cases among health care personnel and non-health care personnel (N = 43,986), by date of illness onset, in the United States during February 12–April 9, 2020. Among the 8,945 (96%) HCP patients reporting age, the median was 42 years (IQR = 32–54 years); 6,603 (73%) were female (Table 1). Among the 3,801 (41%) HCP patients with available data on race, a total of 2,743 (72%) were white, 801 (21%) were black, 199 (5%) were Asian, and 58 (2%) were other or multiple races. Among 3,624 (39%) with ethnicity specified, 3,252 (90%) were reported as non-Hispanic/Latino and 372 (10%) as Hispanic/Latino. At least one underlying health condition † was reported by 1,779 (38%) HCP patients with available information. TABLE 1 Demographic characteristics, exposures, symptoms, and underlying health conditions among health care personnel with COVID-19 (N = 9,282) — United States, February 12–April 9, 2020 Characteristic (no. with available information) No. (%) Age group (yrs) (8,945) 16–44 4,898 (55) 45–54 1,919 (21) 55–64 1,620 (18) ≥65 508 (6) Sex (9,067) Female 6,603 (73) Male 2,464 (27) Race (3,801) Asian 199 (5) Black 801 (21) White 2,743 (72) Other* 58 (2) Ethnicity (3,624) Hispanic/Latino 372 (10) Non-Hispanic/Latino 3,252 (90) Exposures†,§ (1,423) Only health care exposure 780 (55) Only household exposure 384 (27) Only community exposure 187(13) Multiple exposure settings¶ 72 (5) Symptoms reported§,** (4,707) Fever, cough, or shortness of breath†† 4,336 (92) Cough 3,694 (78) Fever§§ 3,196 (68) Muscle aches 3,122 (66) Headache 3,048 (65) Shortness of breath 1,930 (41) Sore throat 1,790 (38) Diarrhea 1,507 (32) Nausea or vomiting 923 (20) Loss of smell or taste¶¶ 750 (16) Abdominal pain 612 (13) Runny nose 583 (12) Any underlying health condition§,*** (4,733) 1,779 (38) Abbreviation: COVID-19 = coronavirus disease 2019. * “Other” includes patients who were identified as American Indian or Alaska Native (16), Native Hawaiian or Other Pacific Islander (22), or two or more races (20). † Cases were included in the denominator if the patient reported a known contact with a laboratory-confirmed COVID-19 patient within the 14 days before illness onset in a health care, household, or community setting. § Responses include data from standardized fields supplemented with data from free-text fields. ¶ Includes all patients with contact reported in more than one of these settings: health care, household, and community. ** Cases were included in the denominator if the patient had a known symptom status for fever, cough, shortness of breath, nausea or vomiting, and diarrhea. HCP with mild or asymptomatic infections might have been less likely to be tested, thus less likely to be reported. †† Includes all patients with at least one of these symptoms. §§ Patients were included if they had information for either measured or subjective fever variables and were considered to have a fever if “yes” was indicated for either variable. ¶¶ Symptom data on loss of smell or taste was extracted only from free-text symptom fields, thus the proportion with this symptom is likely an underestimate. *** Preexisting medical conditions and other risk factors (yes, no, or unknown) included the following: chronic lung disease (inclusive of asthma, chronic obstructive pulmonary disease, and emphysema); diabetes mellitus; cardiovascular disease; chronic renal disease; chronic liver disease; immunocompromised condition; neurologic disorder, neurodevelopmental or intellectual disability; pregnancy; current smoking status; former smoking status; or other chronic disease. Among 1,423 HCP patients who reported contact with a laboratory-confirmed COVID-19 patient in either health care, household, or community settings, 780 (55%) reported having such contact only in a health care setting within the 14 days before their illness onset; 384 (27%) reported contact only in a household setting; 187 (13%) reported contact only in a community setting; 72 (5%) reported contact in more than one of these settings. Among HCP patients with data available on a core set of signs and symptoms, § a total of 4,336 (92%) reported having at least one of fever, cough, shortness of breath. Two thirds (3,122, 66%) reported muscle aches, and 3,048 (65%) reported headache. Loss of smell or taste was written in for 750 (16%) HCP patients as an “other” symptom. Among HCP patients with data available on age and health outcomes, 6,760 (90%) were not hospitalized, 723 (8%–10%) were hospitalized, 184 (2%–5%) were admitted to an ICU, and 27 (0.3%–0.6%) died (Table 2). Although only 6% of HCP patients were aged ≥65 years, 10 (37%) deaths occurred among persons in this age group. TABLE 2 Hospitalizations,* intensive care unit (ICU) admissions, † and deaths, § by age group among health care personnel with COVID-19 — United States, February 12–April 9, 2020 Age group¶ (yrs) (no. of cases) Outcome, no. (%)** Hospitalization†† ICU admission Death 16–44 (4,898) 260 (5.3–6.4) 44 (0.9–2.2) 6 (0.1–0.3) 45–54 (1,919) 178 (9.3–11.1) 51 (2.7–6.3) 3 (0.2–0.3) 55–64 (1,620) 188 (11.6–13.8) 54 (3.3–7.5) 8 (0.5–1.0) ≥65 (508) 97 (19.1–22.3) 35 (6.9–16.0) 10 (2.0–4.2) Total (8,945) 723 (8.1–9.7) 184 (2.1–4.9) 27 (0.3–0.6) Abbreviation: COVID-19 = coronavirus disease 2019. * Hospitalization status known for 7,483 (84%) patients. † ICU status known for 3,739 (42%) patients. § Death outcomes known for 4,407 (49%) patients. ¶ Age status known for 8,945 (96%) patients. ** Lower bound of range = number of persons hospitalized, admitted to ICU, or who died among total in age group; upper bound of range = number of persons hospitalized, admitted to ICU, or who died among total in age group with known hospitalization status, ICU admission status, or death. †† Hospitalization status includes hospitalization with or without ICU admission. Discussion As of April 9, 2020, a total of 9,282 U.S. HCP with confirmed COVID-19 had been reported to CDC. This is likely an underestimation because HCP status was available for only 16% of reported cases nationwide. HCP with mild or asymptomatic infections might also have been less likely to be tested, thus less likely to be reported. Overall, only 3% (9,282 of 315,531) of reported cases were among HCP; however, among states with more complete reporting of HCP status, HCP accounted for 11% (1,689 of 15,194) of reported cases. The total number of COVID-19 cases among HCP is expected to rise as more U.S. communities experience widespread transmission. Compared with reports of COVID-19 patients in the overall populations of China and Italy ( 4 , 5 ), reports of HCP patients in the United States during February 12–April 9 were slightly younger, and a higher proportion were women; this likely reflects the age and sex distributions among the U.S. HCP workforce. Race and ethnicity distributions among HCP patients reported to CDC are different from those in the overall U.S. population but are more similar to those in the HCP workforce. ¶ , ** Among HCP patients who reported having contact with a laboratory-confirmed COVID-19 patient in health care, household, or community settings, the majority reported contact that occurred in health care settings. However, there were also known exposures in households and in the community, highlighting the potential for exposure in multiple settings, especially as community transmission increases. Further, transmission might come from unrecognized sources, including presymptomatic or asymptomatic persons ( 6 , 7 ). Together, these exposure possibilities underscore several important considerations for prevention. Done alone, contact tracing after recognized occupational exposures likely will fail to identify many HCP at risk for developing COVID-19. Additional measures that will likely reduce the risk for infected HCP transmitting the virus to colleagues and patients include screening all HCP for fever and respiratory symptoms at the beginning of their shifts, prioritizing HCP for testing, and ensuring options to discourage working while ill (e.g., flexible and nonpunitive medical leave policies). Given the evidence for presymptomatic and asymptomatic transmission ( 7 ), covering the nose and mouth (i.e., source control) is recommended in community settings where other social distancing measures are difficult to maintain. †† Assuring source control among all HCP, patients, and visitors in health care settings is another promising strategy for further reducing transmission. Even if everyone in a health care setting is covering their nose and mouth to contain their respiratory secretions, it is still critical that, when caring for patients, HCP continue to wear recommended personal protective equipment (PPE) (e.g., gown, N95 respirator [or facemask if N95 is not available], eye protection, and gloves for COVID-19 patient care). Training of HCP on preventive measures, including hand hygiene and PPE use, is another important safeguard against transmission in health care settings. Among HCP with COVID-19 whose age status was known, 8%–10% were reported to be hospitalized. This is lower than the 21%–31% of U.S. COVID-19 cases with known hospitalization status described in a recent report ( 8 ) and might reflect the younger median age (42 years) of HCP patients compared with that of reported COVID-19 patients overall, as well as prioritization of HCP for testing, which might identify less severe illness. Similar to earlier findings ( 8 ), increasing age was associated with a higher prevalence of severe outcomes, although severe outcomes, including death, were observed in all age groups. Preliminary estimates of the prevalence of underlying health conditions among all patients with COVID-19 reported to CDC through March 2020 ( 9 ) suggested that 38% had at least one underlying condition, the same percentage found in this HCP patient population. Older HCP or those with underlying health conditions ( 8 , 9 ) should consider consulting with their health care provider and employee health program to better understand and manage their risks regarding COVID-19. The increased prevalence of severe outcomes in older HCP should be considered when mobilizing retired HCP to increase surge capacity, especially in the face of limited PPE availability §§ ; one consideration is preferential assignment of retired HCP to lower-risk settings (e.g., telemedicine, administrative assignments, or clinics for non–COVID-19 patients). The findings in this report are subject to at least five limitations. First, approximately 84% of patients were missing data on HCP status. Thus, the number of cases in HCP reported here must be considered a lower bound because additional cases likely have gone unidentified or unreported. Second, among cases reported in HCP, the amount of missing data varied across demographic groups, exposures, symptoms, underlying conditions, and health outcomes; cases with available information might differ systematically from those without available information. Therefore, additional data are needed to confirm findings about the impact of potentially important factors (e.g., disparities in race and ethnicity or underlying health conditions among HCP). Third, additional time will be necessary for full ascertainment of outcomes, such as hospitalization status or death. Fourth, details of occupation and health care setting were not routinely collected through case-based surveillance and, therefore, were unavailable for this analysis. Finally, among HCP patients who reported contact with a confirmed COVID-19 patient in a health care setting, the nature of this contact, including whether it was with a patient, visitor, or other HCP, and the details of potential occupational exposures, including whether HCP were unprotected (i.e., without recommended PPE) or were present during high risk procedures (e.g., aerosol-generating procedures) are unknown ( 10 ). It is critical to make every effort to ensure the health and safety of this essential national workforce of approximately 18 million HCP, both at work and in the community. Surveillance is necessary for monitoring the impact of COVID-19-associated illness and better informing the implementation of infection prevention and control measures. Improving surveillance through routine reporting of occupation and industry not only benefits HCP, but all workers during the COVID-19 pandemic. Summary What is already known about this topic? Limited information is available about COVID-19 infections among U.S. health care personnel (HCP). What is added by this report? Of 9,282 U.S. COVID-19 cases reported among HCP, median age was 42 years, and 73% were female, reflecting these distributions among the HCP workforce. HCP patients reported contact with COVID-19 patients in health care, household, and community settings. Most HCP patients were not hospitalized; however, severe outcomes, including death, were reported among all age groups. What are the implications for public health practice? It is critical to ensure the health and safety of HCP, both at work and in the community. Improving surveillance through routine reporting of occupation and industry not only benefits HCP, but all workers during the COVID-19 pandemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiology of and Risk Factors for Coronavirus Infection in Health Care Workers

              Background: Health care workers (HCWs) are at risk for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Purpose: To examine the burden of SARS-CoV-2, SARS-CoV-1, and Middle Eastern respiratory syndrome (MERS)-CoV on HCWs and risk factors for infection, using rapid and living review methods. Data Sources: Multiple electronic databases including the WHO Database of Publications on Coronavirus Disease and medRxiv preprint server (2003 through 27 March 2020, with ongoing surveillance through 24 April 2020), and reference lists. Study Selection: Studies published in any language reporting incidence of or outcomes associated with coronavirus infections in HCWs and studies on the association between risk factors (demographic characteristics, role, exposures, environmental and administrative factors, and personal protective equipment [PPE] use) and HCW infections. New evidence will be incorporated on an ongoing basis by using living review methods. Data Extraction: One reviewer abstracted data and assessed methodological limitations; verification was done by a second reviewer. Data Synthesis: 64 studies met inclusion criteria; 43 studies addressed burden of HCW infections (15 on SARS-CoV-2), and 34 studies addressed risk factors (3 on SARS-CoV-2). Health care workers accounted for a significant proportion of coronavirus infections and may experience particularly high infection incidence after unprotected exposures. Illness severity was lower than in non-HCWs. Depression, anxiety, and psychological distress were common in HCWs during the coronavirus disease 2019 outbreak. The strongest evidence on risk factors was on PPE use and decreased infection risk. The association was most consistent for masks but was also observed for gloves, gowns, eye protection, and handwashing; evidence suggested a dose–response relationship. No study evaluated PPE reuse. Certain exposures (such as involvement in intubations, direct patient contact, or contact with bodily secretions) were associated with increased infection risk. Infection control training was associated with decreased risk. Limitation: There were few studies on risk factors for SARS-CoV-2, the studies had methodological limitations, and streamlined rapid review methods were used. Conclusion: Health care workers experience significant burdens from coronavirus infections, including SARS-CoV-2. Use of PPE and infection control training are associated with decreased infection risk, and certain exposures are associated with increased risk. Primary Funding Source: World Health Organization.
                Bookmark

                Author and article information

                Contributors
                Journal
                MMWR Morb Mortal Wkly Rep
                MMWR Morb. Mortal. Wkly. Rep
                WR
                Morbidity and Mortality Weekly Report
                Centers for Disease Control and Prevention
                0149-2195
                1545-861X
                04 September 2020
                04 September 2020
                : 69
                : 35
                : 1221-1226
                Affiliations
                Vanderbilt University Medical Center, Nashville, Tennessee; CDC COVID-19 Response Team; Baystate Medical Center, Springfield, Massachusetts; Beth Israel Deaconess Medical Center, Boston, Massachusetts; University of Colorado School of Medicine, Aurora, Colorado; Hennepin County Medical Center, Minneapolis, Minnesota; Intermountain Healthcare, Salt Lake City, Utah; Montefiore Medical Center, Bronx, New York; Oregon Health & Sciences University Hospital, Portland, Oregon; Ohio State University Wexner Medical Center, Columbus, Ohio; Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina; Johns Hopkins Hospital, Baltimore, Maryland; UCLA Medical Center, Los Angeles, California; Harborview Medical Center, Seattle, Washington.
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Vanderbilt University Medical Center, Nashville, Tennessee
                Baystate Medical Center, Springfield, Massachusetts
                Baystate Medical Center, Springfield, Massachusetts
                Baystate Medical Center, Springfield, Massachusetts
                Baystate Medical Center, Springfield, Massachusetts
                Baystate Medical Center, Springfield, Massachusetts
                Baystate Medical Center, Springfield, Massachusetts
                University of Colorado School of Medicine, Aurora, Colorado
                University of Colorado School of Medicine, Aurora, Colorado
                University of Colorado School of Medicine, Aurora, Colorado
                University of Colorado School of Medicine, Aurora, Colorado
                University of Colorado School of Medicine, Aurora, Colorado
                University of Colorado School of Medicine, Aurora, Colorado
                University of Colorado School of Medicine, Aurora, Colorado
                Hennepin County Medical Center, Minneapolis, Minnesota
                Hennepin County Medical Center, Minneapolis, Minnesota
                Hennepin County Medical Center, Minneapolis, Minnesota
                Hennepin County Medical Center, Minneapolis, Minnesota
                Hennepin County Medical Center, Minneapolis, Minnesota
                Salt Lake City, Utah
                Intermountain Healthcare, Salt Lake City, Utah
                Intermountain Healthcare, Salt Lake City, Utah
                Intermountain Healthcare, Salt Lake City, Utah
                Intermountain Healthcare, Salt Lake City, Utah
                Oregon Health & Sciences University Hospital, Portland, Oregon
                Sciences University Hospital, Portland, Oregon
                Sciences University Hospital, Portland, Oregon
                Oregon Health & Sciences University Hospital, Portland, Oregon
                Oregon Health & Sciences University Hospital, Portland, Oregon
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Ohio State University Wexner Medical Center, Columbus, Ohio
                Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
                Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
                UCLA Medical Center, Los Angeles, California
                UCLA Medical Center, Los Angeles, California
                UCLA Medical Center, Los Angeles, California
                Harborview Medical Center, Seattle, Washington
                Harborview Medical Center, Seattle, Washington
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19
                Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19
                Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team
                CDC COVID-19 Response Team.
                Author notes
                Corresponding author: Wesley H. Self, wesley.self@ 123456vumc.edu .
                Article
                mm6935e2
                10.15585/mmwr.mm6935e2
                7470460
                32881855
                bb727d3a-d9de-40ee-989a-b1cd0d23192a

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                History
                Categories
                Full Report

                Comments

                Comment on this article