17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glucose, glycolysis, and neurodegenerative diseases

      1 , 2
      Journal of Cellular Physiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson's disease.

          Parkinson's disease is a neurological disorder with evolving layers of complexity. It has long been characterised by the classical motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic neurons in the substantia nigra. However, the symptomatology of Parkinson's disease is now recognised as heterogeneous, with clinically significant non-motor features. Similarly, its pathology involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates other than just Lewy bodies. The cause of Parkinson's disease remains unknown, but risk of developing Parkinson's disease is no longer viewed as primarily due to environmental factors. Instead, Parkinson's disease seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of Parkinson's disease is accompanied by clinical challenges, including an inability to make a definitive diagnosis at the earliest stages of the disease and difficulties in the management of symptoms at later stages. Furthermore, there are no treatments that slow the neurodegenerative process. In this Seminar, we review these complexities and challenges of Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Warburg Effect: How Does it Benefit Cancer Cells?

            Cancer cells rewire their metabolism to promote growth, survival, proliferation, and long-term maintenance. The common feature of this altered metabolism is the increased glucose uptake and fermentation of glucose to lactate. This phenomenon is observed even in the presence of completely functioning mitochondria and, together, is known as the 'Warburg Effect'. The Warburg Effect has been documented for over 90 years and extensively studied over the past 10 years, with thousands of papers reporting to have established either its causes or its functions. Despite this intense interest, the function of the Warburg Effect remains unclear. Here, we analyze several proposed explanations for the function of Warburg Effect, emphasize their rationale, and discuss their controversies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPK: guardian of metabolism and mitochondrial homeostasis.

              Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Cellular Physiology
                J Cell Physiol
                Wiley
                0021-9541
                1097-4652
                November 2020
                April 02 2020
                November 2020
                : 235
                : 11
                : 7653-7662
                Affiliations
                [1 ]Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore
                [2 ]NUS Graduate School of Integrative Sciences and Engineering National University of Singapore Singapore
                Article
                10.1002/jcp.29682
                32239718
                bb61f01b-95d4-4184-a0e9-45f44a93dbab
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article