21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation. Association of data analysis of mRNAs, microRNAs, circular RNAs and long non-coding RNAs, obtained at different time points over these processes, are important to depict the complexity of differentiation. This review will discuss the results that were highlighted in transcriptome analyses of MSC undergoing adipogenic, osteogenic and chondrogenic differentiation. The focus is to shed light on key molecules, main signaling pathways and biological processes related to different time points of adipogenesis, osteogenesis and chondrogenesis.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?

          Mesenchymal stem cells (MSCs), a non-hematopoietic stem cell population first discovered in bone marrow, are multipotent cells capable of differentiating into mature cells of several mesenchymal tissues, such as fat and bone. As common progenitor cells of adipocytes and osteoblasts, MSCs are delicately balanced for their differentiation commitment. Numerous in vitro investigations have demonstrated that fat-induction factors inhibit osteogenesis, and, conversely, bone-induction factors hinder adipogenesis. In fact, a variety of external cues contribute to the delicate balance of adipo-osteogenic differentiation of MSCs, including chemical, physical, and biological factors. These factors trigger different signaling pathways and activate various transcription factors that guide MSCs to commit to either lineage. The dysregulation of the adipo-osteogenic balance has been linked to several pathophysiologic processes, such as aging, obesity, osteopenia, osteopetrosis, and osteoporosis. Thus, the regulation of MSC differentiation has increasingly attracted great attention in recent years. Here, we review external factors and their signaling processes dictating the reciprocal regulation between adipocytes and osteoblasts during MSC differentiation and the ultimate control of the adipo-osteogenic balance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput sequencing technologies.

            The human genome sequence has profoundly altered our understanding of biology, human diversity, and disease. The path from the first draft sequence to our nascent era of personal genomes and genomic medicine has been made possible only because of the extraordinary advancements in DNA sequencing technologies over the past 10 years. Here, we discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Concise review: the surface markers and identity of human mesenchymal stem cells.

              The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo. © 2014 AlphaMed Press.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                08 July 2020
                2020
                : 8
                : 561
                Affiliations
                Instituto Carlos Chagas – Fiocruz Paraná , Curitiba, Brazil
                Author notes

                Edited by: Lindolfo da Silva Meirelles, Universidade Luterana do Brazil, Brazil

                Reviewed by: Maria Fernanda Forni, Yale University, United States; Akiyoshi Uezumi, Tokyo Metropolitan Institute of Gerontology, Japan

                *Correspondence: Bruno Dallagiovanna, bruno.dallagiovanna@ 123456fiocruz.br

                This article was submitted to Stem Cell Research, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.00561
                7362937
                32733882
                baf2f07e-6615-492a-bea8-1bfb9d808a5b
                Copyright © 2020 Robert, Marcon, Dallagiovanna and Shigunov.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 March 2020
                : 12 June 2020
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 167, Pages: 27, Words: 0
                Funding
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 10.13039/501100003593
                Funded by: Fundação Oswaldo Cruz 10.13039/501100006507
                Categories
                Cell and Developmental Biology
                Review

                transcriptome,adipogenesis,osteogenesis,chondrogenesis,mesenchymal stem/stromal cell,gene expression profile,cell differentiation

                Comments

                Comment on this article